Para Va'a is a new Paralympic sport in which athletes with trunk and/or leg impairment compete over 200 m. The purpose of this study was to examine the impact of impairment on kinematic and kinetic variables during Va'a ergometer paddling. Ten able-bodied and 44 Para Va'a athletes with impairments affecting: trunk and legs (TL), legs bilaterally (BL) or leg unilaterally (UL) participated. Differences in stroke frequency, mean paddling force, and joint angles and correlation of the joint angles with paddling force were examined. Able-bodied demonstrated significantly greater paddling force as well as knee and ankle flexion ranges of movement (ROM) on the top hand paddling side compared to TL, BL and UL. Able-bodied, BL and UL demonstrated greater paddling force and trunk flexion compared to TL, and UL demonstrated larger bottom hand paddling side knee and ankle flexion ROM compared to BL. Significant positive correlations were observed for both male and female athletes between paddling force and all trunk flexion angles and ROM in the trunk and pelvis rotation and bottom hand paddling side hip, knee and ankle flexion. The results of this study are important for creating an evidence-based classification system for Para Va'a.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2019.1606763DOI Listing

Publication Analysis

Top Keywords

paddling force
20
para va'a
16
knee ankle
12
ankle flexion
12
hand paddling
12
paddling side
12
paddling
10
impact impairment
8
impairment kinematic
8
kinematic kinetic
8

Similar Publications

K2 performance depends on different kinematic and kinetic variables. Due to the lack of related studies in this area, we have tried to explain these features to better understand the best positioning of paddlers and how their synchronization affects performance. This study uses the DAQ system comprising two instrumented paddles-an IMU and a GPS ("E-kayak" system)-to investigate paddle synchronization and the specific positioning of paddlers' in preferred and inverted configurations.

View Article and Find Full Text PDF

A Comparison of Paddle Forces between Whitewater and Flatwater Training in C1 Canoe Slalom.

J Funct Morphol Kinesiol

September 2024

Faculty of Physical Education and Sport, Charles University, 110 00 Prague, Czech Republic.

Background/objectives: Becoming an elite canoe slalom athlete requires thousands of hours of training, spread over many years. It is difficult to assess the correct balance between flatwater and whitewater training because differences in the paddle forces on these terrains are not known. The aim of this study was to describe paddle forces during canoe slalom training on flatwater and whitewater courses for the C1 canoe category.

View Article and Find Full Text PDF

Canoe slalom is an Olympic discipline where athletes race down a whitewater course in kayaks (K1) or canoes (C1) navigating a set of down-stream and up-stream gates. Kayak paddles are symmetrical and have a blade at each end, whereas C1 paddles have only one blade that must be moved across the boat to perform strokes on either the right or left side. Asymmetries in paddle force between the two sides of the boat may lead to a reduction in predicted race time.

View Article and Find Full Text PDF

Among fossorial mammals, forelimbs are major digging apparatuses for dwelling, sheltering and foraging underground. Forelimb-diggers have independently evolved in many lineages of mammals; thus, the method of digging with forelimbs varies by taxon. Therefore, the reconstruction of digging behaviours in extinct animals leads us to understand the evolutionary process of fossorial adaptation in each lineage.

View Article and Find Full Text PDF

The development of the maritime industry has led to a corresponding increase in maritime accidents. Maritime accidents are major events that are costly to recover and can cause casualties. Moreover, individuals who are brought to the scene for recovery or rescue are at risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!