Excessive erythrocytosis (EE; hemoglobin concentration [Hb] ≥21 g/dL in adult males) is associated with increased cardiovascular risk in highlander Andeans. We sought to quantify shear stress and assess endothelial function via flow-mediated dilation (FMD) in male Andeans with and without EE. We hypothesized that FMD would be impaired in Andeans with EE after accounting for shear stress and that FMD would improve after isovolemic hemodilution. Brachial artery shear stress and FMD were assessed in 23 male Andeans without EE (age: 40±15 years [mean±SD]; Hb<21 g/dL) and 19 male Andeans with EE (age: 43±14 years; Hb≥21 g/dL) in Cerro de Pasco, Peru (4330 m). Shear stress was quantified from Duplex ultrasound measures of shear rate and blood viscosity. In a subset of participants (n=8), FMD was performed before and after isovolemic hemodilution with blood volume replaced by an equal volume of human serum albumin. Blood viscosity and Hb were 48% and 23% higher (both P<0.001) and FMD was 28% lower after adjusting for the shear stress stimulus ( P=0.013) in Andeans with EE compared to those without. FMD was inversely correlated with blood viscosity ( r=0.303; P<0.001) and Hb ( r=0.230; P=0.001). Isovolemic hemodilution decreased blood viscosity by 30±10% and Hb by 14±5% (both P<0.001) and improved shear stress stimulus-adjusted FMD from 2.7±1.9% to 4.3±1.9% ( P=0.022). Hyperviscosity, high Hb, or both, actively contribute to acutely reversible impairments in FMD in EE, suggesting that this plays a pathogenic role in the increased cardiovascular risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12780 | DOI Listing |
Science
January 2025
Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.
Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen's flow law, in which strain rate depends on stress raised to a power of = 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous ( 1.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFActa Cardiol
January 2025
The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China.
Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.
View Article and Find Full Text PDFMicrofluid Nanofluidics
July 2024
Department of Biomedical Engineering, The University of Arizona, 1200 E University Blvd, Tucson 85721, Arizona, USA.
The blood-brain barrier (BBB) protects the brain by actively allowing the entry of ions and nutrients while limiting the passage of from toxins and pathogens. A healthy BBB has low permeability and high selectivity to maintain normal brain functions. Increased BBB permeability can result from neurological diseases and traumatic injuries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!