Fusarium verticillioides is the pathogen associated with pokkah boeng disease (PBD), the most significant airborne disease of sugarcane. The molecular mechanisms that regulate the defense responses of sugarcane towards this fungus are not yet fully known. Samples of 'YT 94/128' (resistant, R) and 'GT 37' (susceptible, S) inoculated with F. verticillioides on the 14 days post-inoculation were used to analyze the transcriptome to screen R genes. In total, 80.93 Gb of data and 76,175 Unigenes were obtained after assembling the sequencing data, and comparisons of Unigenes with NR, Swiss-prot, KOG, and KEGG databases confirmed 42,451 Unigenes. The analysis of differentially expression genes (DEGs) in each sample revealed 9092 DEGs in 'YT 94/128,' including 8131 up-regulated DEGs and 961 down-regulated DEGs; there were 9829 DEGs in 'GT 37,' including 7552 up-regulated DEGs and 2277 down-regulated DEGs. The identified DEGs were mainly involved in catalytic enzyme activity, cell protease, hydrolytic enzymes, peptide enzyme, protein metabolism process of negative regulation, phenylpropanoid metabolism, extracellular region, aldehyde dehydrogenase, endopeptidase, REDOX enzyme, protein kinases, and phosphoric acid transferase categories. KEGG pathway clustering analysis showed that the DEGs involved in resistance were significantly related to metabolic pathways of phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, nitrogenous metabolism, biosynthesis of secondary metabolites, and plant-pathogen interactions. This application of transcriptomic data clarifies the mechanism of interactions between sugarcane and F. verticillioides, which can help to reveal disease-related metabolic pathways, molecular regulatory networks, and key genes involved in sugarcane responses to F. verticillioides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-019-04820-9 | DOI Listing |
BMC Cancer
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background: Rectal cancer is a highly heterogeneous gastrointestinal tumor, and the prognosis for patients with treatment-resistant and metastatic rectal cancer remains poor. Mitophagy, a type of selective autophagy that targets mitochondria, plays a role in promoting or inhibiting tumors; however, the importance of mitophagy-related genes (MRGs) in the prognosis and treatment of rectal cancer is unclear.
Methods: In this study, we used the differentially expressed genes (DEGs) and MRGs from the TCGA-READ dataset to identify differentially expressed mitophagy-related genes (MRDEGs).
Bull Exp Biol Med
January 2025
Department of Laboratory Medicine, Putian University, Putian, China.
The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118, Kiel, Germany.
Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.
The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.
View Article and Find Full Text PDFImmunology
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Maternal vaccination is essential for safeguarding both mother and foetus from infectious diseases. This study investigated the immunogenicity and efficacy of a maternal ORF-B2L genetic vaccine in a pregnant rat model, focusing on maternal-neonatal immune modulation, placental and neonatal spleen transcriptomics and the underlying mechanisms contributing to neonatal immune development. Female rats received intramuscular injections of either a gene vaccine (GV) containing 200 μg of recombinant ORF-B2L DNA and 50 μg of a subunit protein or an empty plasmid as a control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!