Urban wastewater inputs are a relevant pollution source to rivers, contributing a complex mixture of nutrients, organic matter and organic microcontaminants to these systems. Depending on their composition, WWTP effluents might perform either as enhancers (subsidizers) or inhibitors (stressors) of biological activities. In this study, we evaluated in which manner biofilms were affected by treated urban WWTP effluent, and how much they recovered after exposure was terminated. We used indoor artificial streams in a replicated regression design, which were operated for a total period of 56 days. During the first 33 days, artificial streams were fed with increasing concentration of treated effluents starting with non-contaminated water and ending with undiluted effluent. During the recovery phase, the artificial streams were fed with unpolluted water. Sewage effluents contained high concentrations of personal care products, pharmaceuticals, nutrients, and dissolved organic matter. Changes in community structure, biomass, and biofilm function were most pronounced in those biofilms exposed to 58% to 100% of WWTP effluent, moving from linear to quadratic or cubic response patterns. The return to initial conditions did not allow for complete biofilm recovery, but biofilms from the former medium diluted treatments were the most benefited (enhanced response), while those from the undiluted treatments showed higher stress (inhibited response). Our results indicated that the effects caused by WWTP effluent discharge on biofilm structure and function respond to the chemical pressure only in part, and that the biofilm dynamics (changes in community composition, increase in thickness) imprint particular response pathways over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.04.178 | DOI Listing |
Water Res
December 2024
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. Electronic address:
Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.
View Article and Find Full Text PDFPeerJ
January 2025
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
The average annual water availability worldwide is approximately 1,386 trillion cubic hectometers (hm), of which 97.5% is saltwater and only 2.5% is freshwater.
View Article and Find Full Text PDFSci Total Environ
January 2025
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada. Electronic address:
Upgrading wastewater treatment plants (WWTPs) is a global practice for achieving increasingly stringent nutrient discharge objectives set by governments to accommodate population growth and reduce surface water pollution. However, associated downstream improvements in nutrient conditions are difficult to determine in nearshore regions of large aquatic ecosystems due to complex biophysical processes. We conducted a nine-year water quality study and analyzed the data using linear mixed models (LMMs) within a Before-After-Control-Impact (BACI) framework to assess effects of an upgrade to the Duffin Creek Water Pollution Control Plant (DCWPCP) on surface water nutrient conditions and proliferation of nuisance benthic algae (Cladophora glomerata) in nearshore Lake Ontario.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Jeffrey Sachs Center on Sustainable Development, Sunway University, 47500, Sunway City, Selangor, Malaysia.
Wastewater treatment plant (WWTP) is a sustainable technique for making wastewater reusable for non-potable purposes. However, in developing countries, most conventional WWTPs are not equipped to trap all pharmaceutical residues (PRs) and pharmaceutically active chemicals (PhACs). This study aims to perform non-target screening of these contaminants in wastewater and explore health and environmental hazards and the removal efficiency of a WWTP in Malaysia.
View Article and Find Full Text PDFWater Res
January 2025
School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!