Glucose-Insulin regulation models can be used to individualize insulin therapy. However, the experimental techniques currently used to identify the appropriate parameter sets of an individual are expensive, time consuming, and very unpleasant for the patient. Since there is a wide range of intrapersonal parameter variability, the identified parameters in a laboratory setting (at rest) are not optimal for dynamic conditions of daily activities. In this study we propose a methodology to identify three parameters of Bergman's Minimal Model in streptozotocin-induced diabetic rats from the experimental data of the glucose response to exogenous insulin doses, based on a genetic algorithm (GA). The algorithm requires glucose measurements from a continuous subcutaneous sensor once every 5 min and the amount of injected insulin. The model parameters of 20 in vivo experiments (from 19 rats) were identified with high accuracy and the average root-mean squared (RMS) error between predicted and measured glucose concentration was 17.6 mg/dl. Since the algorithm requires a relatively short (60-120 min) observation time it can be used for real-time parameter identification to optimize insulin infusion systems. Model parameter changes due to experimental settings like drug testing or in natural lifestyle changes should be calculable, on-the-fly, using data from only the glucose sensor and the amount of insulin delivered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2019.03.028DOI Listing

Publication Analysis

Top Keywords

minimal model
8
rats experimental
8
data glucose
8
algorithm requires
8
insulin
6
rapid automatic
4
automatic identification
4
parameters
4
identification parameters
4
parameters bergman
4

Similar Publications

Our ability to balance upright provides a stable platform to perform daily activities. Balance deficits associated with various clinical conditions may affect activities of daily living, highlighting the importance of quantifying standing balance in ecological environments. Although typically performed in laboratory settings, the growing availability of low-cost inertial measurement units (IMUs) allows the assessment of balance in the real world.

View Article and Find Full Text PDF

The explosion of Internet-of-Thing enables several interconnected devices but also gives rise chance for unauthorized parties to compromise sensitive information through wireless communication systems. Covert communication therefore has emerged as a potential candidate for ensuring data privacy in conjunction with physical layer transmission to render two lines of defense. In this paper, we aim to enhance the individual transmission of nearby users in non-orthogonal multiple access (NOMA) systems under scenarios of an eavesdropper who monitors covert transmission before decoding covert information.

View Article and Find Full Text PDF

Machine learning-based blood pressure estimation using impedance cardiography data.

Acta Physiol (Oxf)

February 2025

Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Objective: Accurate blood pressure (BP) measurement is crucial for the diagnosis, risk assessment, treatment decision-making, and monitoring of cardiovascular diseases. Unfortunately, cuff-based BP measurements suffer from inaccuracies and discomfort. This study is the first to access the feasibility of machine learning-based BP estimation using impedance cardiography (ICG) data.

View Article and Find Full Text PDF

This study aims to elucidate current trends in clinical practice for managing depression in elderly patients, focusing on the utilization of pharmacotherapeutics and integrated care models to improve patient outcomes. A comprehensive survey was conducted among physicians from various European countries to gather insights into prescribing habits, treatment patterns, and the impact of comorbidities on therapeutic choices, with a focus on trazodone. The participants included psychiatrists, general practitioners, and neurologists actively involved in elderly depression care.

View Article and Find Full Text PDF

The use of routine adjuvant radiotherapy (RT) after breast-conserving surgery (BCS) is controversial in elderly patients with early-stage breast cancer (EBC). This study aimed to evaluate the efficacy of adjuvant RT for elderly EBC patients using deep learning (DL) to personalize treatment plans. Five distinct DL models were developed to generate personalized treatment recommendations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!