Sustainability assessments have revealed that integration of CO from coal-fired flue gas with microalgae cultivation systems could reduce greenhouse gas emissions. The technical goal of this integration is to utilize exhaust from coal power plants to enhance microalgae cultivation processes by capturing and recycling of carbon dioxide from a more toxic to a less toxic form. However, heavy metals are also introduced along with CO2 to the cultivation system which could contaminate biomass and have deleterious effects on products derived from such systems. The present study aimed at shedding some light on capability of microalgae to sustain their diversity and propagate them under different CO concentrations from coal-fired flue gas. Mixed microalgal culture was grown in nutrient rich medium and heavy metals (Al, Cu, Fe, Mn and Zn) are expected to be introduced from flue gas. Three concentrations (1%, 3% and 5.5%) of CO were evaluated (reference concentrations from flue gas). Comparative studies were carried out by flue gas and control systems in photobioreactors. Under the 3% CO (30% flue gas), the highest fraction of B, Mn and Zn were found to be internalized by the cells (46.8 ±9.45 gL-1, 253.66 ± 40.62 gL-1 and 355.5 ±50.69 gL-1 respectively) during their cultivation period into biomass. Hence, microalgae may offer solution to two major challenges: providing potential biofuel feedstock for energy security and reducing heavy metal pollution to the air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.03.118 | DOI Listing |
iScience
August 2024
Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China.
A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address:
As the frontier of environmental catalysis, mercury removal by deNO unit over bifunctional catalyst has emerged. However, it is fundamentally challenging to achieve simultaneous NO and mercury removal in industrial flue gas due to the commercial selective catalytic reduction (SCR) molecular sieves' lack of demercuration active centers. Herein, we demonstrate an active site in situ reconfiguration approach to enhance the oxidation of elemental mercury and immobilize divalent mercury by modified commercial SCR catalysts.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 Republic of Korea.
The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
J Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China. Electronic address:
NH-MIL-125 with abundant porosity and specific interactions with CO molecules, has been demonstrate great potential in the field of photocatalytic CO reduction. However, conventional NH-MIL-125 and their composites much lower CO photoreduction efficiency in aerobic environments because of the O competition. To circumvent the issue, this study modifies NH-MIL-125 through crystal facet engineering to enhance its selective CO adsorption and photocatalytic efficiency in the environment of impurity CO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!