Construction and analysis of a dysregulated lncRNA-associated ceRNA network in a rat model of temporal lobe epilepsy.

Seizure

Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Neurology Institute of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China. Electronic address:

Published: July 2019

Purpose: The aim of this work was to investigate expression and cross-talk between long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in a rat model of temporal lobe epilepsy (TLE).

Methods: Noncoding RNA chips were used to explore the expression and relationship between lncRNAs and miRNAs in a rat model of TLE. The expression of different lncRNAs and mRNAs was analysed by Pearson's correlation coefficient, and the function of each lncRNA was annotated by co-expressed genes based on gene ontology classification using DAVID. MiRNA-lncRNA interactions were predicted by using StarBase v2.0, and the competing endogenous RNA (ceRNA) relationship between lncRNAs and miRNAs was built by using Cytoscape software. Real-time PCR was used to verify chip results.

Results: According to the expression profile analysis, 54 lncRNAs, 36 miRNAs and 122 mRNAs were dysregulated in TLE rat model compared to normal controls. The functions of lncRNAs in epilepsy were annotated by their co-expressed genes based on the "guilt by association" strategy. DAVID analysis revealed that differentially expressed lncRNA functions were involved in "potassium channel activity", "metal ion transmembrane transporter activity", and "voltage-gated potassium channel activity". Based on the ceRNA theory, 13 mRNAs, 10 miRNAs and 11 lncRNAs comprise the lncRNA-miRNA-mRNA ceRNA relationship in epilepsy.

Conclusions: The molecular functions of the differentially expressed genes play an important role in the pathogenesis of voltage-gated potassium channel activity. Further ceRNA analyses suggest that modulation of lncRNAs could emerge as a promising therapeutic target for TLE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2019.04.010DOI Listing

Publication Analysis

Top Keywords

rat model
16
lncrnas mirnas
12
model temporal
8
temporal lobe
8
lobe epilepsy
8
lncrnas
8
mirnas rat
8
relationship lncrnas
8
annotated co-expressed
8
co-expressed genes
8

Similar Publications

M2 Microglia-Derived Exosomal miR-144-5p Attenuates White Matter Injury in Preterm Infants by Regulating the PTEN/AKT Pathway Through KLF12.

Mol Biotechnol

January 2025

Department of Pediatrics, Zhongda Hospital, The School of Medicine, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.

Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo.

View Article and Find Full Text PDF

Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.

View Article and Find Full Text PDF

The anti-dyskinetic effect of the clinic-ready mGluRpositive allosteric modulator AZD8529 in the 6-OHDA-lesioned rat.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.

L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.

View Article and Find Full Text PDF

This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.

View Article and Find Full Text PDF

The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!