Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is thought to be an essential component of inflammatory response. However, its role and mechanism in regulating acute lung injury (ALI) and macrophages activation are not well characterized. In our study, we observe that blockade of TRPV4 using GSK2193874 or HC-067047 greatly improve the pneumonedema, the lung pathologic changes, the up-regulation of proinflammatory cytokines and the neutrophil infiltration in LPS-induced lung injury. In vitro, knockdown of TRPV4 in macrophages reduces the levels of pro-inflammatory cytokines, ROS production, Ca concentration in cytoplasma and the activation of calcineurin/NFATc3 signaling. Importantly, change of extracellular Ca in culture medium prevents LPS-induced NFATc3 nuclear translocation, up-regulation of proinflammatory cytokines and ROS production in macrophages. Inhibition of calcineurin with cyclosporine A, FK506 down-regulates the levels of NFATc3 nuclear translocation and proinflammatory cytokines expression. Our results demonstrate that TRPV4-dependent Ca influx contributes to LPS-induced macrophage activation by calcineurin-NFATc3 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.04.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!