A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors.

Biophys J

Center for Biophysics and Quantitative Biology, Urbana, Illinois; Department of Molecular and Integrative Physiology, Urbana, Illinois; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois. Electronic address:

Published: May 2019

Whether synaptic transmission is excitatory or inhibitory depends, to a large extent, on whether the ion channels that open upon binding the released neurotransmitter conduct cations or anions. The mechanistic basis of the opposite charge selectivities of Cys-loop receptors has only recently begun to emerge. It is now clear that ionized side chains-whether pore-facing or buried-in the first α-helical turn of the second transmembrane segments underlie this phenomenon and that the electrostatics of backbone atoms are not critically involved. Moreover, on the basis of electrophysiological observations, it has recently been suggested that not only the sign of charged side chains but also their conformation are crucial determinants of cation-anion selectivity. To challenge these ideas with the chemical and structural rigor that electrophysiological observations naturally lack, we performed molecular dynamics, Brownian dynamics, and electrostatics calculations of ion permeation. To this end, we used structural models of the open-channel conformation of the α1 glutamate-gated Cl channel and the α1 glycine receptor. Our results provided full support to the notion that the conformation of charged sides chains matters for charge selectivity. Indeed, whereas some rotamers of the buried arginines at position 0' conferred high selectivity for anions, others supported the permeation of cations and anions at similar rates or even allowed the faster permeation of cations. Furthermore, we found that modeling glutamates at position -1' of the anion-selective α1 glycine receptor open-state structure-instead of the five native alanines-switches charge selectivity also in a conformation-dependent manner, with some glutamate rotamers being much more effective at conferring selectivity for cations than others. Regarding pore size, we found that the mere expansion of the pore has only a minimal impact on cation-anion selectivity. Overall, these results bring to light the previously unappreciated impact of side-chain conformation on charge selectivity in Cys-loop receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506641PMC
http://dx.doi.org/10.1016/j.bpj.2019.03.022DOI Listing

Publication Analysis

Top Keywords

charge selectivity
16
cys-loop receptors
12
side-chain conformation
8
selectivity
8
selectivity cys-loop
8
cations anions
8
electrophysiological observations
8
cation-anion selectivity
8
α1 glycine
8
glycine receptor
8

Similar Publications

Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid.

Adv Biotechnol (Singap)

January 2025

School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.

Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.

View Article and Find Full Text PDF

Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization.

View Article and Find Full Text PDF

Over the past decade, Mass Administration of Medicines (MAM) has been a key strategy for controlling schistosomiasis and soil-transmitted helminthiasis (STHs) in Anambra State, Nigeria. This longitudinal study, conducted from 2017 to 2019, evaluated the impact of interventions for controlling schistosomiasis (SCH) and STHs in recipient communities. A total of 1,046 pupils aged 5 to 16 years were enrolled, with Kato-Katz and urine filtration methods used for faecal and urine sample analysis.

View Article and Find Full Text PDF

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.

The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!