It remains a significant challenge for fast and high-throughput detection of trace analytes in complex samples with surface-enhanced Raman scattering (SERS) strategy due to the severe interference from matrices. In this work, a miniaturized array gas membrane separation (AGMS) device coupled with SERS was designed and drew up to eliminate matrix influence and improve the reproducibility of SERS signal during real sample analysis. The design of miniaturized AGMS tube was optimized based on quantitative calculation of its air permeability by computational fluid dynamics simulation. A 10 mm height tube was selected as an optimized design with a recovery of 98.3% for acetaldehyde. The practical feasibility of miniaturized AGMS was validated based on the applications in biochemical analysis and food analysis, such as albuminuria and acetaldehyde in urine sample and metaldehyde and thiram in food samples. The results showed that SERS responses of all analytes dramatically increased by eliminating sample matrices after miniaturized AGMS process. Acetaldehyde, albuminuria, metaldehyde and thiram in real samples could be accurately quantified with recoveries of 82.0-123.3%, and the analytical results were validated by corresponding standard methods with relative error ranging from -4.8% to 5.3%. Time consumption of miniaturized AGMS-SERS for one real sample analysis including sample preparation and determination was less than 20 min and could treat 96 samples with 45 min in one run. It is potential that the miniaturized AGMS technique automated by implementation with a robotic arm could greatly expand the range and accelerate the speed of SERS analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.03.031DOI Listing

Publication Analysis

Top Keywords

miniaturized agms
16
miniaturized array
8
array gas
8
gas membrane
8
membrane separation
8
complex samples
8
samples surface-enhanced
8
surface-enhanced raman
8
raman scattering
8
real sample
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!