Early detection and localization of prostate tumors pose a challenge to the medical community. Several imaging techniques, including PET, have shown some success. But no robust and accurate solution has yet been reached. This work aims to detect prostate cancer foci in Dynamic PET images using an unsupervised learning approach. The proposed method extracts three feature classes from 4D imaging data that include statistical, kinetic biological and deep features that are learned by a deep stacked convolutional autoencoder. Anomalies, which are classified as tumors, are detected in feature space using density estimation. The proposed algorithm generates promising results for sufficiently large cancer foci in real PET scans imaging where the foci is not viewed by the tomographic devices used for detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2019.04.001DOI Listing

Publication Analysis

Top Keywords

cancer foci
8
unsupervised tumor
4
tumor detection
4
detection dynamic
4
dynamic pet/ct
4
imaging
4
pet/ct imaging
4
imaging prostate
4
prostate early
4
early detection
4

Similar Publications

Longitudinal MRI evaluation of the efficacy of non-enhanced lung cancer brain metastases.

Sci Rep

January 2025

Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei, China.

Brain metastases (BM) are the most prevalent intracranial malignancies. Approximately 30-40% of cancer patients develop BM at some stage of their illness, presenting with a high incidence and poor prognosis. Our clinical findings indicate a significant disparity in the efficacy between non-enhanced and enhanced lung cancer BM.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Automated scoring to assess RAD51-mediated homologous recombination in ovarian patient-derived tumor organoids.

Lab Invest

January 2025

Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:

PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.

View Article and Find Full Text PDF

Background: Radiofrequency ablation (RFA) is an emerging treatment option for small, low-risk papillary thyroid carcinoma (PTC). This systematic review and meta-analysis aimed to evaluate and compare the efficacy and safety profiles of RFA for primary T1a vs. T1b PTC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!