Open-source pipeline for multi-class segmentation of the spinal cord with deep learning.

Magn Reson Imaging

NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada. Electronic address:

Published: December 2019

This paper presents an open-source pipeline to train neural networks to segment structures of interest from MRI data. The pipeline is tailored towards homogeneous datasets and requires relatively low amounts of manual segmentations (few dozen, or less depending on the homogeneity of the dataset). Two use-case scenarios for segmenting the spinal cord white and grey matter are presented: one in marmosets with variable numbers of lesions, and the other in the publicly available human grey matter segmentation challenge [1]. The pipeline is freely available at: https://github.com/neuropoly/multiclass-segmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800813PMC
http://dx.doi.org/10.1016/j.mri.2019.04.009DOI Listing

Publication Analysis

Top Keywords

open-source pipeline
8
spinal cord
8
grey matter
8
pipeline multi-class
4
multi-class segmentation
4
segmentation spinal
4
cord deep
4
deep learning
4
learning paper
4
paper presents
4

Similar Publications

Background: Environmental exposures such as airborne pollutant exposures and socio-economic indicators are increasingly recognized as important to consider when conducting clinical research using electronic health record (EHR) data or other sources of clinical data such as survey data. While numerous public sources of geospatial and spatiotemporal data are available to support such research, the data are challenging to work with due to inconsistencies in file formats and spatiotemporal resolutions, computational challenges with large file sizes, and a lack of tools for patient- or subject-level data integration.

Results: We developed FHIR PIT (HL7® Fast Healthcare Interoperability Resources Patient data Integration Tool) as an open-source, modular, data-integration software pipeline that consumes EHR data in FHIR® format and integrates the data at the level of the patient or subject with environmental exposures data of varying spatiotemporal resolutions and file formats.

View Article and Find Full Text PDF

Purpose: To describe the development of INSIGHT, a real-world data quality tool to assess completeness, consistency, and fitness-for-purpose of observational health data sources.

Methods: We designed a three-level pipeline with data quality assessments (DQAs) to be performed in ConcePTION Common Data Model (CDM) instances. The pipeline has been coded using R.

View Article and Find Full Text PDF

Automated and Efficient Sampling of Chemical Reaction Space.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.

View Article and Find Full Text PDF

Clair3-RNA: A deep learning-based small variant caller for long-read RNA sequencing data.

bioRxiv

January 2025

Department of Computer Science, School of Computing and Data Science, University of Hong Kong, Hong Kong, China.

Variant calling using long-read RNA sequencing (lrRNA-seq) can be applied to diverse tasks, such as capturing full-length isoforms and gene expression profiling. It poses challenges, however, due to higher error rates than DNA data, the complexities of transcript diversity, RNA editing events, etc. In this paper, we propose Clair3-RNA, the first deep learning-based variant caller tailored for lrRNA-seq data.

View Article and Find Full Text PDF

ShaderNN: A Lightweight and Efficient Inference Engine for Real-time Applications on Mobile GPUs.

Neurocomputing (Amst)

January 2025

Department of Electrical and Computer Engineering, University of Maryland at College Park, 8223 Paint Branch Dr, College Park, MD, 20740, USA.

Inference using deep neural networks on mobile devices has been an active area of research in recent years. The design of a deep learning inference framework targeted for mobile devices needs to consider various factors, such as the limited computational capacity of the devices, low power budget, varied memory access methods, and I/O bus bandwidth governed by the underlying processor's architecture. Furthermore, integrating an inference framework with time-sensitive applications - such as games and video-based software to perform tasks like ray tracing denoising and video processing - introduces the need to minimize data movement between processors and increase data locality in the target processor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!