Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. We find that while dysferlin C2A binds membranes in a Ca-dependent manner, Ca binding was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599597 | PMC |
http://dx.doi.org/10.1016/j.jmb.2019.04.006 | DOI Listing |
J Mol Biol
May 2019
Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA. Electronic address:
Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.
View Article and Find Full Text PDFBiochemistry
August 2013
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
Ferlins are large multi-C2 domain membrane proteins involved in membrane fusion and fission events. In this study, we investigate the effects of binding of the C2 domains of otoferlin, dysferlin, and myoferlin on the structure of lipid bilayers. Fluorescence measurements indicate that multi-C2 domain constructs of myoferlin, dysferlin, and otoferlin change the lipid packing of both small unilamellar vesicles and giant plasma membrane vesicles.
View Article and Find Full Text PDFFASEB J
March 2007
Center for Human and Clinical Genetics, Leiden Univesity Medical Center, Leiden, The Netherlands.
Mutations in dysferlin cause limb girdle muscular dystrophy 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin is proposed to play a role in muscle membrane repair. To gain functional insight into the molecular mechanisms of dysferlin, we have searched for dysferlin-interacting proteins in skeletal muscle.
View Article and Find Full Text PDFDevelopment
December 2005
Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number.
View Article and Find Full Text PDFJ Biol Chem
June 2002
Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA.
Mutations in dysferlin, a novel membrane protein of unknown function, lead to muscular dystrophy. Myoferlin is highly homologous to dysferlin and like dysferlin is a plasma membrane protein with six C2 domains highly expressed in muscle. C2 domains are found in a variety of membrane-associated proteins where they have been implicated in calcium, phospholipid, and protein-binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!