Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. We find that while dysferlin C2A binds membranes in a Ca-dependent manner, Ca binding was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599597PMC
http://dx.doi.org/10.1016/j.jmb.2019.04.006DOI Listing

Publication Analysis

Top Keywords

myoferlin c2a
12
dysferlin c2a
12
membrane binding
8
c2a binds
8
c2a
7
dysferlin
6
structural basis
4
basis distinct
4
distinct membrane
4
binding activity
4

Similar Publications

Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin.

J Mol Biol

May 2019

Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA. Electronic address:

Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.

View Article and Find Full Text PDF

Ferlins are large multi-C2 domain membrane proteins involved in membrane fusion and fission events. In this study, we investigate the effects of binding of the C2 domains of otoferlin, dysferlin, and myoferlin on the structure of lipid bilayers. Fluorescence measurements indicate that multi-C2 domain constructs of myoferlin, dysferlin, and otoferlin change the lipid packing of both small unilamellar vesicles and giant plasma membrane vesicles.

View Article and Find Full Text PDF

Mutations in dysferlin cause limb girdle muscular dystrophy 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin is proposed to play a role in muscle membrane repair. To gain functional insight into the molecular mechanisms of dysferlin, we have searched for dysferlin-interacting proteins in skeletal muscle.

View Article and Find Full Text PDF

Normal myoblast fusion requires myoferlin.

Development

December 2005

Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.

Muscle growth occurs during embryonic development and continues in adult life as regeneration. During embryonic muscle growth and regeneration in mature muscle, singly nucleated myoblasts fuse to each other to form myotubes. In muscle growth, singly nucleated myoblasts can also fuse to existing large, syncytial myofibers as a mechanism of increasing muscle mass without increasing myofiber number.

View Article and Find Full Text PDF

Mutations in dysferlin, a novel membrane protein of unknown function, lead to muscular dystrophy. Myoferlin is highly homologous to dysferlin and like dysferlin is a plasma membrane protein with six C2 domains highly expressed in muscle. C2 domains are found in a variety of membrane-associated proteins where they have been implicated in calcium, phospholipid, and protein-binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!