A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling. | LitMetric

miR-27a promotes endothelial-mesenchymal transition in hypoxia-induced pulmonary arterial hypertension by suppressing BMP signaling.

Life Sci

Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China. Electronic address:

Published: June 2019

Aim: Growing evidence suggests that endothelial-mesenchymal transition (EndMT) play key roles in pulmonary arterial remodeling during pulmonary arterial hypertension (PAH), but the underlying mechanisms have yet to be fully understood. miR-27a has been shown to promote proliferation of pulmonary arterial cells during PAH, but its role in EndMT remains unexplored. This study was designed to investigate the role and underlying mechanism of miR-27a in EndMT during PAH.

Main Methods: Rats were exposed in hypoxia (10% O) for 3 weeks to induce PAH, and human pulmonary artery endothelial cells (HPAECs) were exposed in hypoxia (1% O) for 48 h to induce EndMT. Immunohistochemistry, in situ hybridization, immunofluorescence, real-time PCR and Western blot were conducted to detect the expressions of RNAs and proteins, and luciferase assay was used to verify the putative binding site of miR-27a.

Key Findings: We found that hypoxia up-regulated miR-27a in the tunica intima of rat pulmonary arteries and HPAECs, and that inhibition of miR-27a suppressed hypoxia-induced EndMT. Furthermore, elevated expression of miR-27a suppressed bone morphogenetic protein (BMP) signaling by targeting Smad5, thereby lessening Id2-mediated repression of the 2 critical mediators of EndMT (Snail and Twist).

Significance: Our data unveiled a novel role of miR-27a in EndMT during hypoxia-induced PAH. Thus, targeting of miR-27a-related pathway may be therapeutically harnessed to treat PAH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2019.04.038DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
16
endothelial-mesenchymal transition
8
arterial hypertension
8
bmp signaling
8
mir-27a endmt
8
exposed hypoxia
8
mir-27a suppressed
8
mir-27a
7
endmt
7
pulmonary
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!