19F NMR as a versatile tool to study membrane protein structure and dynamics.

Biol Chem

Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.

Published: September 2019

To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2018-0473DOI Listing

Publication Analysis

Top Keywords

membrane protein
12
tool study
8
study membrane
8
protein structure
8
structure dynamics
8
membrane proteins
8
membrane
6
19f nmr
4
nmr versatile
4
versatile tool
4

Similar Publications

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.

Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to analyze the retinal sensitivity under photopic, mesopic, and scotopic conditions in a cohort of patients affected with KCNV2-associated retinopathy.

Methods: Cross-sectional evaluation of molecularly confirmed individuals was conducted. Data were obtained prospectively.

View Article and Find Full Text PDF

Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!