The main objective of this study was to demonstrate a computational approach of global sensitivity analysis (GSA) integrated with functional principal component analysis (fPCA) for activated sludge models through aggregation of time-dependent model response patterns into time-independent coefficients of functional principal components (PCs). This proposed approach addresses the main issue of time-varying character of GSA indices when calculated solely on the time-dependent model outputs. The GSA-fPCA methodology was implemented using the rigorous model Activated Sludge Model No. 3 (ASM3) as case study. The approach transforms the time-dependent model outputs into functional PCs prior to calculation of GSA indices to remove the time-varying character of the calculated GSA indices. This work focused on the evaluation of the following key computational factors that may significantly influence the performance of the GSA-fPCA methodology: (a) model parameter sampling range, (b) model simulation period, (c) basis functions system, and (d) state of the system being modeled-batch or continuous activated sludge process. Results show that first few functional PCs capture up to 100% of the curve patterns in the time-dependent model outputs. The sensitivity indices calculated from the PC scores via Morris' GSA technique elucidated parameter sensitivity patterns inherent to the complex mathematical structure of ASM3. PRACTITIONER POINTS: Functional principal components-mediated GSA technique to remove time-varying character of sensitivity indices derived from time-dependent dynamical models. Technique amenable to improving efficiency of capturing response patterns into few functional principal components through various basis functions. Identifying priority parameters for ASM3 model calibration requires specification of target model outputs to which parameter sensitivities are calculated. GSA-fPCA offers a comprehensive numerical approach to manipulating models depending on the intended applications: simple fast-responding models to complex models.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.1127DOI Listing

Publication Analysis

Top Keywords

activated sludge
20
functional principal
16
time-dependent model
16
model outputs
16
time-varying character
12
gsa indices
12
model
11
global sensitivity
8
sensitivity analysis
8
sludge models
8

Similar Publications

A Review on Biohazards Removal in Ethiopia: Efficacy of Existing Treatment Systems and Challenges.

Environ Health Insights

January 2025

Department of Environmental Health, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia.

Background: Wastewater treatment is crucial to protecting public health and the environment by removing Biohazards. In Ethiopia, however, significant research gaps limit progress, especially regarding the efficiency of Biohazard removal in existing treatment facilities. This review evaluates the effectiveness of current treatment methods for Biohazard removal, highlights key challenges, and offers recommendations.

View Article and Find Full Text PDF

In October and December 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected from two wastewater samples in Poland during routine environmental surveillance. The first isolate was characterised and matched previous cVDPV2 isolates detected in Spain in September, as well as in Germany, Finland, and the United Kingdom in November and December 2024. In response to the event, active surveillance for acute flaccid paralysis (AFP) has been strengthened, and the frequency of environmental sample collection has been increased.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Impact of phosphorus on the functional properties of extracellular polymeric substances recovered from sludge.

Water Res

December 2024

Deptartment of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.

Extracellular Polymeric Substances (EPS) are ubiquitous in biological wastewater treatment (WWT) technologies like activated sludge systems, biofilm reactors, and granular sludge systems. EPS recovery from sludge potentially offers a high-value material for the industry. It can be utilized as a coating in slow-release fertilizers, as a bio-stimulant, as a binding agent in building materials, for the production of flame retarding materials, and more.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!