A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Orthogonal joint sparse NMF for microarray data analysis. | LitMetric

Orthogonal joint sparse NMF for microarray data analysis.

J Math Biol

Department of Mathematics, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.

Published: July 2019

The 3D microarrays, generally known as gene-sample-time microarrays, couple the information on different time points collected by 2D microarrays that measure gene expression levels among different samples. Their analysis is useful in several biomedical applications, like monitoring dose or drug treatment responses of patients over time in pharmacogenomics studies. Many statistical and data analysis tools have been used to extract useful information. In particular, nonnegative matrix factorization (NMF), with its natural nonnegativity constraints, has demonstrated its ability to extract from 2D microarrays relevant information on specific genes involved in the particular biological process. In this paper, we propose a new NMF model, namely Orthogonal Joint Sparse NMF, to extract relevant information from 3D microarrays containing the time evolution of a 2D microarray, by adding additional constraints to enforce important biological proprieties useful for further biological analysis. We develop multiplicative updates rules that decrease the objective function monotonically, and compare our approach to state-of-the-art NMF algorithms on both synthetic and real data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00285-019-01355-2DOI Listing

Publication Analysis

Top Keywords

orthogonal joint
8
joint sparse
8
sparse nmf
8
data analysis
8
nmf
5
microarrays
5
nmf microarray
4
microarray data
4
analysis
4
analysis microarrays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!