Cerium dioxide (CeO) is a surrogate material for traditional nuclear fuels and an essential material for a wide variety of industrial applications both in its bulk and nanometer length scale. Despite this fact, the underlying physics of thermal conductivity (k), a crucial design parameter in industrial applications, has not received enough attention. In this article, a systematic investigation of the phonon transport properties was performed using ab initio calculations unified with the Boltzmann transport equation. An extensive examination of the phonon mode contribution, available three-phonon scattering phase space, mode Grüneisen parameter and mean free path (MFP) distributions were also conducted. To further augment theoretical predictions of the k, measurements were made on specimens prepared by spark plasma sintering using the laser flash technique. Since the sample porosity plays a vital role in the value of measured k, the effect of porosity on k by molecular dynamics (MD) simulations were investigated. Finally, we also determined the nanostructuring effect on the thermal properties of CeO. Since CeO films find application in various industries, the dependence of thickness on the in-plane and cross-plane k for an infinite CeO thin film was also reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474893 | PMC |
http://dx.doi.org/10.1038/s41598-019-42807-5 | DOI Listing |
Sci Rep
December 2024
Department of Physics, Laghman University, Mehtarlam City, Laghman, 2701, Afghanistan.
Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.
View Article and Find Full Text PDFSci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.
As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5. Electronic address:
The development of biofuel technologies depends on the accurate identification and quantification of products from the conversion processes. Given the complexity of the renewable resources, the availability of biomass, and the versatility of conversion methods, there is a need for characterization methods that provide rapid and reliable analysis for various products coming from different conversion processes with minimal sample preparation. This study develops and validates gas chromatography methods that use multiple detectors to analyze pyrolytic compounds in both gas and liquid phases efficiently in a single, rapid run.
View Article and Find Full Text PDFHeliyon
December 2024
Mechanical Engineering Division, Faculty of Engineering, Khon Kaen University, Thailand.
Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!