Surface-emitting organic light-emitting transistors (OLETs) could well be a core element in the next generation of active-matrix (AM) displays. We report some of the key characteristics of graphene-based vertical-type organic light-emitting transistors (Gr-VOLETs) composed of a single-layer graphene source and an emissive channel layer. It is shown that FeCl doping of the graphene source results in a significant improvement in the device performance of Gr-VOLETs. Using the FeCl-doped graphene source, it is demonstrated that the full-surface electroluminescent emission of the Gr-VOLET can be effectively modulated by gate voltages with high luminance on/off ratios (~10). Current efficiencies are also observed to be much higher than those of control organic light-emitting diodes (OLEDs), even at high luminance levels exceeding 500 cd/m. Moreover, we propose an operating mechanism to explain the improvements in the device performance i.e., the effective gate-bias-induced modulation of the hole tunnelling injection at the doped graphene source electrode. Despite its inherently simple structure, our study highlights the significant improvement in the device performance of OLETs offered by the FeCl-doped graphene source electrode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474894 | PMC |
http://dx.doi.org/10.1038/s41598-019-42800-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!