Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background & Aims: Altered microRNA (miRNA) expression is associated with the pathophysiology of obesity; however, little is known about the miRNAs commonly dysregulated in the blood and visceral fat tissue of obese patients. This study compared the circulating and visceral fat miRNA expression in subjects with and without obesity.
Methods: For the circulating miRNA study, 20 healthy control and 30 obese subjects were recruited. For the tissue miRNA expression study, omental fat tissue was collected in ten female subjects each in the control and obese groups. MiRNA expression was measured by TaqMan low-density arrays. Metabolic risk factors were measured. Target genes for selected miRNAs were analyzed using informatics tools and a functional network map was constructed.
Results: 11 miRNAs were down-regulated (miR-133a, -139-5p, -15b, -26a, -301, -30b, -30c, -374, -451, -570, and -636), and one was up-regulated (miR-155) in both depots in obese subjects. These miRNAs had significant associations with BMI, waist circumference, and fat mass. Among them, miR-15b, miR-26a, miR-301, miR-30b, and miR-30c had more predicted obesity-related target genes than other miRNAs. In particular, miR-15b had numerous target genes associated with adipogenesis, mammalian target of rapamycin (mTOR) signaling, diabetes and insulin resistance, and mitochondrial function.
Conclusions: It is suggested that the miRNA alteration in the serum and visceral fat has pathophysiological implications for obesity. Our study identified dysregulated miRNAs that may be novel therapeutic targets to combat obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clnu.2019.03.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!