The aim was to develop a straightforward UHPLC-MS quantification method for polysorbate 80 using oleic acid as surrogate marker, which was the commonest substance within the emulsifier. However, hydrolysis of polysorbate 80 and subsequent analysis of fatty acids revealed a co-elution of oleic acid and an isomer while all the other fatty acids were successfully separated by varying retention times and mass-to-charge ratios. For identification and separation of the isomer a derivatization method was evaluated. Oxidation to the corresponding dihydroxystearic acids with potassium permanganate resulted in peak separation of cis/trans and structural isomers of the 18:1 fatty acids. Hydrolyzed and derivatized polysorbate 80 was quantified indirectly in the range of 0.046-5.83 μg/mL (R > 0.997) with a limit of detection of 11.4 ng/mL. Quantification of polysorbate 80 using oleic acid as a surrogate marker showed good reproducibility and linearity. As all isomers of the 18:1 fatty acids were successfully separated, the previously co-eluting peak was identified as elaidic acid and was found as a component in the mixture of the emulsifier polysorbate 80. Additionally, cis-vaccenic acid was separated as a second co-eluting isomer. Therefore, derivatization led to successful chromatographical separation of cis/trans and structural 18:1 fatty acid isomers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.04.015DOI Listing

Publication Analysis

Top Keywords

oleic acid
16
fatty acids
16
181 fatty
12
quantification polysorbate
8
polysorbate oleic
8
acid surrogate
8
surrogate marker
8
acids separated
8
isomer derivatization
8
separation cis/trans
8

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Exploring the potential active components and mechanisms of Tetrastigma hemsleyanum against ulcerative colitis based on network pharmacology in LPS-induced RAW264.7 cells.

J Ethnopharmacol

January 2025

College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou 310018, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease, which current treatments often show limited effectiveness. Ferroptosis, a newly recognized form of programmed cell death has been implicated in UC pathogenesis, suggesting that it may be viable therapeutic target. Tetrastigma hemsleyanum (TH) has shown potential anti-UC effects, though it is unclear whether its therapeutic benefits are mediated by ferroptosis.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

Rapeseed ( L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed.

View Article and Find Full Text PDF

Marine organisms, including shrimps, have gained research interest due to containing an abundance of bioactive lipid molecules.This study evaluated the composition and the in vitro biological activities of amphiphilic bioactive compounds from four different wild shrimp species: , , , and . Total lipid (TL) extracts were obtained from shrimp and separated into total amphiphilic (TAC) and total lipophilic (TLC) compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!