The feasibility and effectivity of recycling waste rubber and waste plastic (WRP) into asphalt binder as a waste treatment approach has been documented. However, directly blending WRP with asphalt binder brings secondary environmental pollution. Recent research has shown that the addition of WRP into asphalt binder may potentially improve the workability of asphalt binder without significantly compromising its mechanical properties. This study evaluates the feasibility of using the additives derived from WRP as a multifunctional additive which improves both the workability and mechanical properties of asphalt binder. For this purpose, WRP-derived additives were prepared in laboratory. Then, three empirical characteristics-viscosity, rutting factor, fatigue life were analyzed. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to evaluate the effect of WRP-derived additive on the workability and chemical and mechanical properties of base binder. The dispersity of WRP-derived additive inside asphalt binder was also characterized using fluorescence microscope (FM). Results from this study showed that adding WRP-derived additive increases the workability of base binder. The WRP-derived additive appears positive on the high- and low- temperature performance as well as the fatigue life of base binder. The distribution of the WRP-derived additive inside base binder was uniform. In addition, the modification mechanism of WRP-derived additive was also proposed in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515260PMC
http://dx.doi.org/10.3390/ma12081280DOI Listing

Publication Analysis

Top Keywords

asphalt binder
28
wrp-derived additive
24
base binder
16
wrp asphalt
12
mechanical properties
12
binder
11
waste rubber
8
rubber waste
8
waste plastic
8
additive
8

Similar Publications

Accurately assessing the low-temperature performance of asphalt materials is important for asphalt pavements in cold regions with large temperature differences. This study investigates the effects of freeze-thaw cycles on the low-temperature performance of basalt fiber-rubber powder composite modified asphalt mixtures (BRMAM). The influence of basalt fibers content on the mechanical properties of asphalt binder was characterized through basic property tests and bending beam rheometer (BBR) assessments.

View Article and Find Full Text PDF

The significant growth in road infrastructure worldwide over the last decade has resulted in a notable increase in the demand for asphalt binder. However, the utilization of asphalt binder in the road industry poses challenges to environmental sustainability and economic standpoints. The application of vehicular loads and exposure to environmental factors throughout the service life of roads contribute to the deterioration of binder properties, such as hardening and aging, ultimately leading to premature road failure.

View Article and Find Full Text PDF

Microwave Heating and Self-Healing Performance of Asphalt Mixtures Containing Metallic Fibres from Recycled Tyres.

Materials (Basel)

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

This study investigates how recycled metal fibres from End-of-Life Tyres (ELTs) affect both microwave heating efficiency and crack healing properties in dense asphalt mixtures. The aim is to improve tyre recyclability by using their fibres in asphalt and exploring their self-healing potential with microwave heating. To achieve this, four dense asphalt mixture designs were studied in the laboratory.

View Article and Find Full Text PDF

This paper presents the properties of an SMA LA (stone matrix asphalt Lärmarmer) mixture based on the polymer-modified binder PMB 45/80-55, formed by the addition of zeolites (synthetic zeolite type Na-P1 and natural zeolite-clinoptilolite). The compositions of the SMA 11, SMA 8 LA and SMA 11 LA mixtures based on modified bitumen with PMB 45/80-55 (reference mixture) or PMB 45/80-55 with Na-P1 or clinoptilolite were determined. Their resistance to permanent deformation, water sensitivity, water permeability and susceptibility to changes in texture and skid resistance during the period of use were verified.

View Article and Find Full Text PDF

Great efforts have been made in recent years by the scientific community and the asphalt industry in developing sustainable technologies for the production of asphalt mixtures for road paving applications, pursuing the use of ever higher quantities of recycled materials. In this regard, the challenge is to define the optimal formulation of the mixture which allows the various component materials to be synergistically combined without compromising the performance and durability of the asphalt pavement. In such a context, the experimental study described in this paper aimed to provide a contribution to research by investigating sustainable asphalt mixtures containing 50% reclaimed asphalt pavement (RAP) and polymeric compound composed of 100% recycled plastics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!