Mapping water and sediment connectivity.

Sci Total Environ

Environmental Management Laboratory, Mykolas Romeris University, Atieitis, 20, LT-08303, Lithuania.

Published: July 2019

Connectivity has become a key issue in the study of processes acting in hydro-geomorphic systems and has strong implications on the understanding of their behaviour. Given the high complexity of hydro-geomorphic systems and the large variety of the processes controlling the efficiency of water and sediment transfer through a catchment, mapping hydrological and sediment connectivity is fundamental to understand the linkages between different parts of the system and the role played by system configuration, natural landforms and man-made structures in favouring or obstacolating the continuity of runoff and sediment pathways. Furthermore, the analysis of changes on connectivity through time can help to investigate the effect of both natural and anthropic disturbance on water and sediment fluxes and associated processes. This special issue aimed to shed light on the latest advances inmapping water and sediment connectivity by means of field measurements, modelling and geomorphometric approaches along with quantitative methods for the analysis of connectivity temporal evolution.The special issue is composed of twenty-one papers presenting a huge variety of topics dealing with hydrological and sediment connectivity and their changes through time in different geographical andclimatic regions of the world, at different spatial and temporal scales. This special issue highlights the importance of connectivity assessment to properly address sediment and water-related issues and to improve management strategies in hydro-geomorphic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.04.071DOI Listing

Publication Analysis

Top Keywords

water sediment
16
sediment connectivity
16
hydro-geomorphic systems
12
special issue
12
sediment
8
connectivity
8
hydrological sediment
8
mapping water
4
connectivity connectivity
4
connectivity key
4

Similar Publications

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

The soils/sediments organic carbon sorption coefficient (K) of organic substances is one of the indispensable environmental behavioral parameters in chemicals management. Because the test procedure used to measure K is normally expensive and time-consuming, predictive methods are considered vitally important technology to fill the data gap of K. In this study, quantitative structure-property relationship (QSPR) models are developed using a data set with 1477 experimental logK values and seven typical machine learning algorithms.

View Article and Find Full Text PDF

The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.

View Article and Find Full Text PDF

Sulfides as environmental stressors in Paracas Bay, Peru.

Mar Pollut Bull

January 2025

Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.

Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!