The coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation. Layer-by-Layer (LbL) assembly represents a versatile method to modify the surface properties, in order to control cell interaction and thus enhance biological functions. Furthermore, LbL is environmentally friendly, able to coat all types of surfaces with the creation of homogenous film and to include and control the release of biomolecules/drugs. This feature review provides a critical overview on recent progresses in functionalizing materials by LbL assembly for bone regeneration and disorder treatment. An overview of emerging and visionary opportunities on LbL technologies and further combination with other existing methods used in biomedical field, is also discussed to evidence the new challenges and potential developments in bone regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2019.03.009DOI Listing

Publication Analysis

Top Keywords

lbl assembly
8
multilayer nanoscale
4
nanoscale functionalization
4
functionalization treat
4
treat disorders
4
disorders enhance
4
enhance regeneration
4
regeneration bone
4
bone tissue
4
tissue coatings
4

Similar Publications

In situ oxidized MoCT MXene film via electrochemical activation for smart electrochromic supercapacitors.

J Colloid Interface Sci

January 2025

College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China. Electronic address:

MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

is known for causing soft rot in fruit and vegetables during postharvest. Although it has traditionally been considered a saprophyte, it appears to behave more like a necrotrophic pathogen. In this study, we propose that invades host tissues by actively killing host cells and overcoming the host defense mechanisms, as opposed to growing saprophytically on decaying plant matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!