Earlier, we reported that chronic cadmium (Cd)-exposure to prostate epithelial (RWPE-1) cells causes defective autophagy, which leads to the transformation of a malignant phenotype in both in vitro and in vivo models. However, the upstream events responsible for defective autophagy are yet to be delineated. The present study suggests that chronic Cd exposure induces endoplasmic reticulum (ER) stress that triggers the phosphorylation of stress transducers [protein kinase R-like ER Kinase- (PERK), eukaryotic translation initiation factor 2-alpha- (eIF2-α) and Activating Transcription Factor 4 -(ATF-4)], resulting in defective autophagy that protects Cd-exposed RWPE-1 cells. On the other hand, inhibition of the ATF4 stress inducer by siRNA blocked the Cd-induced defective autophagy in transforming cells. While dissecting the upstream activators of ER stress, we found that increased expression of reactive oxygen species (ROS) is responsible for ER stress in Cd-exposed RWPE-1 cells. Overexpression of antioxidants (SOD1/SOD2) mitigates Cd-induced ROS that results in inhibition of ER stress and autophagy in prostate epithelial cells. These results suggest that the induction of ROS and subsequent ER stress are responsible for defective autophagy in Cd-induced transformation in prostate epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572785PMC
http://dx.doi.org/10.1016/j.taap.2019.04.012DOI Listing

Publication Analysis

Top Keywords

defective autophagy
24
responsible defective
12
prostate epithelial
12
rwpe-1 cells
12
endoplasmic reticulum
8
stress
8
reticulum stress
8
stress responsible
8
cd-exposed rwpe-1
8
epithelial cells
8

Similar Publications

Background: Systemic lupus erythematosus is a common autoimmune disease. Studies have suggested that defective stem cells could be involved in the pathogenesis of systemic lupus erythematosus, which leads to changes in the function of immune cells. By observing the cell morphology, autophagy, and senescence of bone marrow mesenchymal stem cells (BMSCs) from lupus mice and normal controls, this study investigated the role of IL-6 in autophagy and senescence of BMSCs and explored relevant mechanisms.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder, accounting for approximately 70% of dementia cases worldwide. Patients gradually exhibit cognitive decline, such as memory loss, aphasia, and changes in personality and behavior. Research has shown that mitochondrial dysfunction plays a critical role in the onset and progression of AD.

View Article and Find Full Text PDF

m6A modified ATG9A is required in regulating autophagy to promote HSCs activation and liver fibrosis.

Cell Signal

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Hepatic stellate cells (HSCs) are the central link of the occurrence and development of hepatic fibrosis, and autophagy promotes HSCs activation. N6-methyladenosine (m6A) RNA modification can also control autophagy by targeting selected autophagy-associated genes. but up to now, little research has been done on the m6A modification autophagy-related genes (ATGs) in hepatic fibrosis.

View Article and Find Full Text PDF

Nearly one billion individuals worldwide suffer from obstructive sleep apnea (OSA) and are potentially impacted by related neurodegeneration. TFEB is considered a master regulator of autophagy and lysosomal biogenesis, but little is known about its role in neuronal oxidative stress and resultant injury induced by OSA. This study aimed to investigate these issues.

View Article and Find Full Text PDF

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!