Metabolic and physiological perturbations of Escherichia coli W3100 by bacterial small RNA RyhB.

Biochimie

Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China. Electronic address:

Published: July 2019

RyhB is a key regulator of iron level in Escherichia coli (E. coli), which assists in conserving iron for life-sustaining cellular functions when cytoplasmic levels of the ferrous form of iron is limited. RyhB affects glucose metabolism. Seventy percent of the genes that are regulated by RyhB are related to metabolism. We demonstrated for the first time that the activity of the pentose phosphate pathway increased upon ryhB activation using aC stable isotope-based technique called METAFoR (Metabolic flux ratio analysis). U-C glucose-based studies showed that the reversible exchange activity of serine and glycine was enhanced by flux redistribution, which further favors NADPH formation. In addition, Entner-Doudoroff (ED) pathway activity was inhibited in the ryhB-defective cells. Quantitative physiology-based experiments highlighted a significant increase in the levels of reactive oxygen species (ROS) in ryhB-induced W3100 E. coli cells in batch culture. A simultaneous decrease in NADH/NAD and NADPH/NADP ratios outlined the potentially direct roles of NADH and NADPH in antagonizing the excess ROS formed after ryhB activation. Our observations offer a new perspective regarding the roles of RyhB and highlight that this small RNA can significantly affect cell metabolism in addition to its role as a regulator of gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2019.04.016DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
small rna
8
ryhb activation
8
ryhb
7
metabolic physiological
4
physiological perturbations
4
perturbations escherichia
4
coli w3100
4
w3100 bacterial
4
bacterial small
4

Similar Publications

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Calcination-Induced Tight Nano-Heterointerface for Highly Effective Eradication of Rib Fracture-Related Infection by Near-Infrared Irradiation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.

Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.

View Article and Find Full Text PDF

Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!