Plasmodium falciparum (Pf), a malarial pathogen, can only synthesize purine nucleotides employing a salvage pathway because it lacks de novo biosynthesis. Adenosine deaminase (ADA), one of the three purine salvage enzymes, catalyzes the irreversible hydrolytic deamination of adenosine to inosine, which is further converted to GMP and AMP for DNA/RNA production. In addition to adenosine conversion, Plasmodium ADA also catalyzes the conversion of 5'-methylthioadenosine, derived from polyamine biosynthesis, into 5'-methylthioinosine whereas the human enzyme is not capable of this function. Here we report the crystal structure of a surface engineered PfADA at a resolution of 2.48 Å, together with results on kinetic studies of PfADA wild-type and active site variants. The structure reveals a novel inosine binding pocket linked to a distinctive PfADA substructure (residues 172-179) derived from a non-conserved gating helix loop (172-188) in Plasmodium spp. and other ADA enzymes. Variants of PfADA and human (h) ADA active site amino acids were generated in order to study their role in catalysis, including PfADA- Phe136, -Thr174, -Asp176, and -Leu179, and hADA-Met155, equivalent to PfADA-Asp176. PfADA-Leu179His showed no effect on kinetic parameters. However, kinetic results of PfADA-Asp176Met/Ala mutants and hADA-Met155Asp/Ala showed that the mutation reduced adenosine and 5'-methylthioadenosine substrate affinity in PfADA and k in hADA, thereby reducing catalytic efficiency of the enzyme. Phe136Leu mutant showed increased K (>10-fold) for both substrates whereas Thr174Ile/Ala only affected 5'-methylthioadenosine binding affinity. Together, the structure with the novel inosine binding pocket and the kinetic data provide insights for rational design of inhibitors against PfADA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2019.04.002DOI Listing

Publication Analysis

Top Keywords

binding pocket
12
crystal structure
8
plasmodium falciparum
8
adenosine deaminase
8
reveals novel
8
active site
8
novel inosine
8
inosine binding
8
pfada
6
adenosine
5

Similar Publications

Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.

Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.

View Article and Find Full Text PDF

FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated design.

View Article and Find Full Text PDF

In plants, sugar will eventually be exported transporters (SWEETs) facilitate the translocation of mono- and disaccharides across membranes and play a critical role in modulating responses to gibberellin (GA3), a key growth hormone. However, the dynamic mechanisms underlying sucrose and GA3 binding and transport remain elusive. Here, we employed microsecond-scale molecular dynamics (MD) simulations to investigate the influence of sucrose and GA3 binding on SWEET13 transporter motions.

View Article and Find Full Text PDF

PPDock: Pocket Prediction-Based Protein-Ligand Blind Docking.

J Chem Inf Model

January 2025

Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China.

Predicting the docking conformation of a ligand in the protein binding site (pocket), i.e., protein-ligand docking, is crucial for drug discovery.

View Article and Find Full Text PDF

Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!