Senna species and anthraquinone derivatives generated by these organisms, rhein and aloe-emodin, exert anti-inflammatory effects. These species present a similar morphology but produce different ingredients when they are used as medicinal products. In this study, a DNA barcoding- (Bar-) high-resolution melting (HRM) technique was developed using internal transcribed sequence 2 (ITS2) to differentiate between Senna alata and Senna tora as a result of significant differences in their melting profiles. We used this approach for confirmation of S. alata and S. tora raw materials, and we examined the chondroprotective properties of the ethanolic extracts of S. alata and S. tora using a porcine model of cartilage degradation induced by a combination of interleukin-17A (IL-17A) and IL-1β. We found that both Senna ethanolic extracts, at a concentration of 25 μg/mL, effectively prevented cartilage degradation. Rhein and aloe-emodin were present in the extract of S. alata but not in that of S. tora. We observed a reduction in the release of sulfated glycosaminoglycans (S-GAGs) and hyaluronic acid (HA) into media in both treatments of Senna extracts, which indicated proteoglycan preservation in explant tissues. These results suggest that neither rhein nor aloe-emodin are the main factors responsible for cartilage-protecting properties. Taken together, results show that both S. alata and S. tora are promising for further development as anti-osteoarthritic agents and that Bar-HRM using ITS2 could be applied for species confirmation with Senna products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474626PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215664PLOS

Publication Analysis

Top Keywords

alata tora
16
rhein aloe-emodin
12
senna
8
senna alata
8
alata senna
8
senna tora
8
tora porcine
8
ethanolic extracts
8
cartilage degradation
8
alata
6

Similar Publications

Senna species and anthraquinone derivatives generated by these organisms, rhein and aloe-emodin, exert anti-inflammatory effects. These species present a similar morphology but produce different ingredients when they are used as medicinal products. In this study, a DNA barcoding- (Bar-) high-resolution melting (HRM) technique was developed using internal transcribed sequence 2 (ITS2) to differentiate between Senna alata and Senna tora as a result of significant differences in their melting profiles.

View Article and Find Full Text PDF

The seeds of nine species belonging to the Fabaceae family (Cassia alata, Cassia uniflora, Cassia obtusifolia, Cassia tora, Crotalaria albida, Crotalaria juncea, Crotalaria pallida, Indigofera tinctoria, and Tephrosia purpurea) were studied. The oil yield ranged from 2.0 to 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!