Broadband transient absorption spectroscopy is used to study the photoisomerization of stiffened stilbenes in solution, specifically E/ Z mixtures of bis(benzocyclobutylidene) (t4, c4) and ( E)-1-(2,2-dimethyltetralinylidene)-2-2-dimethyltetraline (t6). Upon excitation to S, all evolve to perpendicular molecular conformation P, followed by decay to S, while the spectra and the kinetic behavior crucially depend on the size of the stiffening ring. In 4, contrary to all previously studied stilbenes, the trans and cis absorption and excited-state spectra are nearly indistinguishable, while the corresponding isomerization times are comparable: τ = 166 ps for t4 and τ = 64 ps for c4 in n-hexane, as opposed to 114 and 45 ps in acetonitrile, respectively. Faster isomerization in polar solvents agrees with the zwitterionic character of the P state. In t6, torsion to P is effectively barrier-less and completes within 0.3 ps, the S → P evolution being directly traceable through the transient spectra of stimulated emission and that of excited-state absorption. In n-hexane, the P state is remarkably long-lived, τ = 1840 ps, but the lifetime drops down to 35 ps in acetonitrile. The trans-to-cis photoisomerization yield for t6 is measured to be 20%, while for t4, it remains uncertain. We discuss the effects of stiffening and substitution on the formation and lifetime of the intermediate states through which the stilbene molecules evolve on the S energy surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b00784 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands.
The mobility of proteins in the bilayer membrane is affected by (local) changes in lipid environment, which is important to their biological functioning. Artificial molecular systems that-to some extent-imitate tasks of membrane-embedded proteins are increasingly developed, however, they are usually controlled through responsive units in their core structure. Here we present an alternative approach based on an amphiphilic stiff-stilbene derivative that enables control of membrane fluidity by light.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2024
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria. Electronic address:
The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces.
View Article and Find Full Text PDFJ Membr Biol
October 2022
Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA.
Resveratrol (RSV), a biologically active plant phenol, has been extensively investigated for cancer prevention and treatment due to its ability to regulate intracellular targets and signaling pathways which affect cell growth and metastasis. The non-specific interactions between RSV and cell membranes can modulate physical properties of membranes, which in turn can affect the conformation of proteins and perturb membrane-hosted biological functions. This study examines non-specific interactions of RSV with model membranes having varying concentrations of cholesterol (Chol), mimicking normal and cancerous cells.
View Article and Find Full Text PDFCartilage
December 2021
Department of Bioengineering, Northeastern University, Boston, MA, USA.
Objective: Advanced glycation end-product (AGE) accumulation is implicated in osteoarthritis (OA) pathogenesis in aging and diabetic populations. Here, we develop a representative nonenzymatic glycation-induced OA cartilage explant culture model and investigate the effectiveness of resveratrol, curcumin, and eugenol in inhibiting AGEs and the structural and biological hallmarks of cartilage degeneration.
Design: Bovine cartilage explants were treated with AGE-bovine serum albumin, threose, and ribose to determine the optimal conditions that induce physiological levels of AGEs while maintaining chondrocyte viability.
Eur Biophys J
January 2021
Department of Physics and Biophysics, Roentgenology and Radiology, Medical Faculty of Thracian University, 6000, Stara Zagora, Bulgaria.
Two dielectric relaxations, β (1.5 MHz) and γ1 (7 MHz), have been detected on spectrin-based membrane skeleton (MS) of red blood cells (RBCs) using the plot of admittance changes at the spectrin denaturation temperature (Ivanov and Paarvanova in Bioelectrochemistry 110: 59-68, 2016, Electrochim Acta 317: 289-300, 2019a). In this study, we treated RBCs and RBC ghost membranes with agents that make membranes rigid and suppress membrane flicker, and studied the effect on β and γ1 relaxations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!