Adaptive Dimensional Decoupling for Compression of Quantum Nuclear Wave Functions and Efficient Potential Energy Surface Representations through Tensor Network Decomposition.

J Chem Theory Comput

Department of Chemistry and Department of Physics , Indiana University, 800 E. Kirkwood Ave , Bloomington , Indiana 47405 , United States.

Published: May 2019

AI Article Synopsis

  • The study introduces a method to simplify calculations and storage of quantum nuclear wave functions and energy surfaces using tensor networks with singular value decompositions.
  • Two types of tensor networks are discussed: one employs a matrix product state approximation, while the other partitions data into "system" and "bath" components for further decomposition.
  • The approach demonstrates efficiency in representing quantum nuclear states, calculating probabilities, and offers protocols for quantum nuclear dynamics investigations, exemplified through hydrogen transfer in isoprene oxidation.

Article Abstract

We present an approach to reduce the computational complexity and storage pertaining to quantum nuclear wave functions and potential energy surfaces. The method utilizes tensor networks implemented through sequential singular value decompositions. Two specific forms of tensor networks are considered to adaptively compress the data in multidimensional quantum nuclear wave functions and potential energy surfaces. In one case the well-known matrix product state approximation is used whereas in another case the wave function and potential energy surface space is initially partitioned into "system" and "bath" degrees of freedom through singular value decomposition, following which the individual system and bath tensors (wave functions and potentials) are in turn decomposed as matrix product states. We postulate that this leads to a mean-field version of the well-known projectionally entangled pair state known in the tensor networks community. Both formulations appear as special cases of more general higher order singular value decompositions known in the mathematics literature as Tucker decomposition. The networks are then used to study the hydrogen transfer step in the oxidation of isoprene by peroxy and hydroxy radicals. We find that both networks are extremely efficient in accurately representing quantum nuclear eigenstates and potential energy surfaces and in computing inner products between quantum nuclear eigenstates and a final-state basis to yield product side probabilities. We also present formal protocols that will be useful to perform explicit quantum nuclear dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.8b01113DOI Listing

Publication Analysis

Top Keywords

quantum nuclear
24
potential energy
20
wave functions
16
nuclear wave
12
energy surfaces
12
tensor networks
12
energy surface
8
functions potential
8
singular decompositions
8
matrix product
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!