Methods using gas exchange measurements to estimate respiration in the light (day respiration ) make implicit assumptions about reassimilation of (photo)respired CO ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated . Estimates of by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO , and thus underestimated for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates , enlightens the dependence of estimates on reassimilation and clarifies (dis)advantages of existing methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618012PMC
http://dx.doi.org/10.1111/nph.15857DOI Listing

Publication Analysis

Top Keywords

reaction-diffusion model
16
reassimilation photorespired
12
positions mitochondria
12
day respiration
8
gas exchange
8
laisk method
8
kok method
8
conditions yin
8
yin kok
8
reassimilation
5

Similar Publications

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Ordinary differential equation models such as the classical SIR model are widely used in epidemiology to study and predict infectious disease dynamics. However, these models typically assume that populations are homogeneously mixed, ignoring possible variations in disease prevalence due to spatial heterogeneity. To address this issue, reaction-diffusion models have been proposed as an alternative approach to modeling spatially continuous populations in which individuals move in a diffusive manner.

View Article and Find Full Text PDF

This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable.

View Article and Find Full Text PDF

Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling.

Phys Med

December 2024

Division of Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.

Purpose: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) time.

Methods: An established reaction-diffusion model was employed to simulate the spatiotemporal evolution of cancerous regions in T1-MRI images of GBM patients. The effects of the parameters of this model on the simulated tumor borders were quantified and the optimal values were used to estimate the distribution of infiltrative cells (CTVmodel).

View Article and Find Full Text PDF

Dynamic patterns in herding predator-prey system: Analyzing the impact of inertial delays and harvesting.

Chaos

December 2024

Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India.

This study expands traditional reaction-diffusion models by incorporating hyperbolic dynamics to explore the effects of inertial delays on pattern formation. The kinetic system considers a harvested predator-prey model where predator and prey populations gather in herds. Diffusion and inertial effects are subsequently introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!