Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Response surface methodology was successfully used to optimize the amounts of chitosan (CS), polyethyleneimine (PEI), graphene oxide (GO), and glutaraldehyde (GLA) to produce a multifunctional nanocomposite membrane coating able to remove positively and negatively charged heavy metals, such as Cr(VI) and Cu(II). Batch experiments with different concentrations of the four coating components (GO, CS, PEI, and GLA) on cellulose membranes were carried out with solutions containing 10 ppm Cr(VI) and Cu(II) ions. Reduced quadratic equations for the Cr(VI) and Cu(II) removal were obtained based on the observed results of the batch experiments. The numerical analysis resulted in an optimized solution of soaking for 30 min in CS, 1.95% PEI, 1000 ppm GO, and 1.68% GLA with predicted removal of 90 ± 10 and 30 ± 3% for Cr(VI) and Cu(II), respectively, with a desirability of 0.99. This mathematically optimized solution for the coating was experimentally validated. To determine the best membrane material for the coating, stability of the nanocomposite coating was determined using attenuated total reflectance-infrared spectroscopy in eight membrane materials before and after exposure to four solutions with different water chemistries. The glass microfiber (GMF) membranes were determined to be one of the best materials to receive the coating. Then, the coated GMF filter was further investigated for the removal of Cr(VI) and Cu(II) in single and binary component solutions. The results showed that the coatings were able to remove successfully both heavy metal ions, suggesting its ability to remove positively and negatively charged ions from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b03601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!