A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biochar/struvite composite as a novel potential material for slow release of N and P. | LitMetric

Biochar/struvite composite as a novel potential material for slow release of N and P.

Environ Sci Pollut Res Int

School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China.

Published: June 2019

For soil and environmental remediation, biochar/struvite composites are prepared by the crystallization-adsorption method. The recovery rates of N, P, and Mg in the solution increase to 99.02%, 97.23%, and 95.22%, respectively, by forming 10% biochar/struvite composite. X-ray diffraction (XRD) patterns acquired from the 10% biochar/struvite composite show a crystalline structure of MgNHPO·6HO (PDF no. 15-0762) and release of the main nutrient elements (N, P, Mg) from the 10% biochar/struvite composite increases significantly compared to struvite. The solubility of the biochar/struvite composite is the highest in 0.5 mol/L HCl, second in 20 g/L citric acid, and lowest in water. The power function equation describes more precisely the cumulative release of N, P, and Mg from the biochar/struvite composite in distilled water, whereas it follows the simple Elovich equation in 20 g/L critic acid and first-order kinetics equation in 0.5 mol/L HCl. Leaching experiments are performed on the biochar/struvite composite in soil, and the results indicate that the biochar/struvite composite has a longer cycle of release of nutrients than traditional chemical fertilizers and has large potential as a slow-release fertilizer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-04458-xDOI Listing

Publication Analysis

Top Keywords

biochar/struvite composite
32
10% biochar/struvite
12
biochar/struvite
9
05 mol/l hcl
8
composite
7
composite novel
4
novel potential
4
potential material
4
material slow
4
release
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!