Coleus forskohlii is a perennial medicinal shrub cultivated mainly for its forskolin content. The plant has been used since ancient times in ayurvedic traditional medicines for the treatment of hypertension, glaucoma, asthma, congestive heart failures, obesity, and cancer. Use of endophytic microorganisms presents a special interest for the development of value-added bioactive compounds through agriculture. Limited investigations have been undertaken on in planta enhancement of forskolin content using endophytic fungus in sustainable agriculture. Here we report specific roles of three fungal endophytes, Fusarium redolens (RF1), Phialemoniopsis cornearis (SF1), and Macrophomina pseudophaseolina (SF2), functionally acting as plant probiotic fungus, regulating secondary metabolite (forskolin) biosynthesis in C. forskohlii. The root endophyte, RF1, and shoot endophytes, SF1 and SF2, were found to enhance forskolin content by 52 to 88% in pot and 60 to 84% in field experiments as compared to uninoculated control plants. The three endophytes also enhanced total biomass owing to plant growth promoting properties. The expression of diterpene synthases (CfTPSs) like CfTPS1, CfTPS2, CfTPS3, and CfTPS4 were significantly upregulated in endophyte-treated C. forskohlii plants. Elevated expression of key diterpene synthases (CfTPS2) in the forskolin biosynthesis pathway, exclusively present in the root cork of C. forskohlii, was observed following SF2 endophyte treatment. Furthermore, endophyte treatments conferred a variety of antagonistic activity against nematode galls (80%) and plant pathogens like Fusarium oxysporum, Colletotricum gloeosporioides, and Sclerotium rolfsii. RF1 and SF1 fungal endophytes showed positive for IAA production; however, SF1 also indicated phosphate solubilization activity. Overall, the qualitative and quantitative improvement of in planta forskolin enhancement represents an area of high commercial interest, and hence, our work focused on novel insights for the application of three fungal endophytes for in planta enhancement of forskolin content for C. forskohlii cultivation by a sustainable approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-019-01376-w | DOI Listing |
Mycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Centro de Ecología Integrativa (CEI), Universidad de Talca, Talca, Chile.
Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Front Microbiol
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.
Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.
Front Plant Sci
January 2025
Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom.
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, s CBE, to induce osmotic stress tolerance in under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by CBE in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!