Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The gut microbiota composition and its metabolites have high impact on human health. Exploitation of prebiotics and probiotics for modulation of gut microbiota can lead to promising outcomes. This study aimed to evaluate the effects of the probiotic strain Bifidobacterium longum BB-46 alone and in combination with a citric pectin from lemon on the gut microbiota from healthy adults using the Simulator of Human Intestinal Microbial Ecosystem (SHIME). Changes in microbiota composition and in metabolic activity were assessed by the 16S rRNA gene sequencing and by analyses of short-chain fatty acids (SCFAs) and ammonium ions (NH). An increase in the relative abundances of Firmicutes (especially the members of Lachnospiraceae and Lactobacillaceae families) and Bacteroidetes was observed during treatment with B. longum BB-46 alone in all compartments of the colon. Treatment with B. longum BB-46 and pectin stimulated an increase in the proportions of genera Faecalibacterium, Eubacterium and Lactobacillus, as well as in the Ruminococcaceae family in the transverse and descending colons. Concurrently, the butyrate levels increased in these two compartments. Additionally, the combination of B. longum BB-46 and pectin reduced the abundance of proteolytic bacteria Bacteroides, Clostridium, Peptoniphilus, and Streptococcus, along with decreased NH production. No significant changes could be observed on NH production by treatment with B. longum BB-46, nor did it increase the amount of SCFAs. In this study, we observed that although each treatment was able to modulate the microbiota, the combination of B. longum BB-46 and pectin was more efficient in decreasing the intestinal NH levels and in increasing butyric acid-producing bacteria. These findings indicate that B. longum BB-46, especially when combined with the specific citric pectin, might have beneficial impact on human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2018.11.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!