Dendritic cells (DCs) can initiate and direct adaptive immune responses. This ability is exploitable in DC vaccination strategies, in which DCs are educated ex vivo to present tumor antigens and are administered into the patient with the aim to induce a tumor-specific immune response. DC vaccination remains a promising approach with the potential to further improve cancer immunotherapy with little or no evidence of treatment-limiting toxicity. However, evidence for objective clinical antitumor activity of DC vaccination is currently limited, hampering the clinical implementation. One possible explanation for this is that the most commonly used monocyte-derived DCs may not be the best source for DC-based immunotherapy. The novel approach to use naturally circulating DCs may be an attractive alternative. In contrast to monocyte-derived DCs, naturally circulating DCs are relatively scarce but do not require extensive culture periods. Thereby, their functional capabilities are preserved, the reproducibility of clinical applications is increased, and the cells are not dysfunctional before injection. In human blood, at least three DC subsets can be distinguished, plasmacytoid DCs, CD141 and CD1c myeloid/conventional DCs, each with distinct functional characteristics. In completed clinical trials, either CD1c myeloid DCs or plasmacytoid DCs were administered and showed encouraging immunological and clinical outcomes. Currently, also the combination of CD1c myeloid and plasmacytoid DCs as well as the intratumoral use of CD1c myeloid DCs is under investigation in the clinic. Isolation and culture strategies for CD141 myeloid DCs are being developed. Here, we summarize and discuss recent clinical developments and future prospects of natural DC-based immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471787PMC
http://dx.doi.org/10.1186/s40425-019-0580-6DOI Listing

Publication Analysis

Top Keywords

dcs
13
naturally circulating
12
plasmacytoid dcs
12
cd1c myeloid
12
myeloid dcs
12
cancer immunotherapy
8
dendritic cells
8
monocyte-derived dcs
8
dc-based immunotherapy
8
circulating dcs
8

Similar Publications

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Background: mRNA-based cancer vaccines show promise in triggering antitumour immune responses. To combine them with existing immunotherapies, the intratumoral immune microenvironment needs to be deeply characterised. Here, we test nanostructured lipid carriers (NLCs), the so-called Lipidots®, for delivering unmodified mRNA encoding Ovalbumin (OVA) antigen to elicit specific antitumour responses.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.

View Article and Find Full Text PDF

Background: The Society of Cardiovascular Angiography and Intervention (SCAI) has defined 5 stages of cardiogenic shock (CS). In patients with acute myocardial infarction (AMI) who initially present in stable hemodynamic condition (SCAI CS stage: A or B), CS stages could deteriorate despite therapeutic management. However, deterioration of SCAI CS stages after AMI remains to be fully characterized.

View Article and Find Full Text PDF

Advancing brain immunotherapy through functional nanomaterials.

Drug Deliv Transl Res

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.

Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!