Background: White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV variable regions were characterized in silico.

Results: The in silico approach enabled determining the variability of some sequences, as well as the identification of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related to protein modulation/degradation, intracellular transport, recombination and endosome fusion events.

Conclusions: The bioinformatics approaches were efficient in generating three-dimensional models and to identify domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474068PMC
http://dx.doi.org/10.1186/s12900-019-0106-yDOI Listing

Publication Analysis

Top Keywords

putative proteins
12
proteins encoded
8
white spot
8
spot syndrome
8
syndrome virus
8
variable regions
8
proteins
5
characterization putative
4
encoded variable
4
variable orfs
4

Similar Publications

Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.

View Article and Find Full Text PDF

In silico analysis and gene expression patterns of lignin peroxidase isozymes in Phanerochaete chrysosporium.

Int J Biol Macromol

January 2025

Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:

Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.

View Article and Find Full Text PDF

While total RNA concentrations putatively represent ribosome content, there is a need to homologize various quantification approaches. Thus, total RNA concentrations ([RNA]) provided through UV-Vis spectroscopy (UV), fluorometry-only (Fluor), and fluorometry-based microfluidic chip electrophoresis (MFGE) were examined in C2C12 myotubes and mouse skeletal muscle to determine if values aligned with [18S + 28S rRNA] (i.e.

View Article and Find Full Text PDF

First report of the whole‑genome sequence analysis of Fig badnavirus 2 from China.

Virus Genes

January 2025

College of Agronomy, Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Agricultural University, Urumqi, 830052, China.

A novel plant virus was identified in fig trees exhibiting ring spot symptoms through high-throughput sequencing (HTS). The complete genome sequence was successfully determined using PCR and RT-PCR techniques. The virus features a circular DNA genome of 7233 nucleotides (nt) in length, encompassing four open reading frames (ORFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!