We numerically study the spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor using the theories of complex networks and synchronization. The turbulence network, which consists of nodes and vertexes in weighted networks between vortices, can characterize the complex spatiotemporal structure of a flow field during thermoacoustic combustion instability. The transfer entropy allows us to identify the driving region of thermoacoustic combustion instability. In addition to the order parameter, a phase parameter newly proposed in this study is useful for capturing the precursor of thermoacoustic combustion instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.032208 | DOI Listing |
Exp Fluids
October 2024
Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Helmholtzstrasse 18, 01062 Dresden, Germany.
In aircraft engines, thermoacoustic oscillations in the combustion chamber contribute significantly to noise emissions, which, like all other emissions, must be drastically reduced. Thermoacoustic oscillations are not only a concern, they can also be beneficial in hydrogen combustion. This work demonstrates that thermoacoustic density oscillations with amplitudes at least an order of magnitude smaller than those resulting from density gradients in a turbulent flame can be detected using laser interferometric vibrometry.
View Article and Find Full Text PDFChaos
May 2024
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, TN 600036, India.
Thermoacoustic instability in turbulent combustion systems emerges from the complex interplay among the flame, flow, and acoustic subsystems. While the onset of thermoacoustic instability exhibits a global order, the characteristics of local interactions between subsystems responsible for this order are not well understood. Here, we utilize the framework of synchronization to elucidate the spatiotemporal interactions among heat release rate fluctuations in the flame, velocity fluctuations in the flow, and acoustic pressure fluctuations in a turbulent combustor, across the bluff-body stabilized flame.
View Article and Find Full Text PDFJ Acoust Soc Am
March 2024
CAPS Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Zürich 8092, Switzerland.
In the literature on thermoacoustic instabilities in combustors, a distinction is typically made between annular and can-annular systems because these are the most common gas turbine architectures. In reality, however, annular combustors typically feature discretely symmetric elements, such as burner tubes, and can-annular combustors feature an azimuthally symmetric plenum at the turbine inlet. To better understand the general case in between the annular and can-annular extremes, we analyze the acoustic spectrum of an idealized can-annular combustion chamber with variable geometry, where the length of the axial gap distance beyond the ends of the cans-hence, the coupling strength-may be adjusted.
View Article and Find Full Text PDFChaos
March 2024
Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India.
In this paper, we analyze the effects of finite correlation time (noise color) of combustion noise on noise-induced coherence and early warning indicators (EWIs) via numerical and experimental studies. We consider the Rijke tube as a prototypical combustion system and model combustion noise as an additive Ornstein-Uhlenbeck process while varying noise intensity and correlation time. We numerically investigate corresponding effects on coherence resonance and multi-fractal properties of pressure fluctuations.
View Article and Find Full Text PDFChaos
January 2024
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
Real-world complex systems such as the earth's climate, ecosystems, stock markets, and combustion engines are prone to dynamical transitions from one state to another, with catastrophic consequences. State variables of such systems often exhibit aperiodic fluctuations, either chaotic or stochastic in nature. Often, the parameters describing a system vary with time, showing time dependency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!