A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active dynamics and spatially coherent motion in chromosomes subject to enzymatic force dipoles. | LitMetric

Inspired by recent experiments on chromosomal dynamics, we introduce an exactly solvable model for the interaction between a flexible polymer and a set of motorlike enzymes. The enzymes can bind and unbind to specific sites of the polymer and produce a dipolar force on two neighboring monomers when bound. We study the resulting nonequilibrium dynamics of the polymer and find that the motion of the monomers has several properties that were observed experimentally for chromosomal loci: a subdiffusive mean-square displacement and the appearance of regions of correlated motion. We also determine the velocity autocorrelation of the monomers and find that the underlying stochastic process is not fractional Brownian motion. Finally, we show that the active forces swell the polymer by an amount that becomes constant for large polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.032421DOI Listing

Publication Analysis

Top Keywords

active dynamics
4
dynamics spatially
4
spatially coherent
4
motion
4
coherent motion
4
motion chromosomes
4
chromosomes subject
4
subject enzymatic
4
enzymatic force
4
force dipoles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!