Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The surface characteristics of coronary stents play a pivotal role in inhibiting in-stent restenosis and late-stent thrombosis. In this study, a sol-gel-derived silica xerogel-chitosan hybrid coating was applied to Co-Cr stent and was reported, for the first time, as a biocompatible drug delivery tool in vascular stent application. A dense and uniform chitosan-silica xerogel hybrid coating (<1-μm thick) was applied on bare Co-Cr material. Sirolimus was well incorporated into the hybrid coatings without re-crystallization. The chitosan-silica hybrid coating with 30 wt% silica xerogel showed better mechanical stability and good adhesive strength without any cracking or delamination. The chitosan-silica hybrid coated Co-Cr surface exhibited significantly improved wettability and corrosion resistance compared to the chitosan coated Co-Cr surface. In addition, the hybrid coating layer enabled efficient loading of sirolimus, owing to the unique mesoporous structure of silica xerogel, which further allowed the sustained release of sirolimus over 3 weeks. In-vitro tests with human umbilical cord vein endothelial cells and blood platelets confirmed that the chitosan-silica hybrid coating had excellent cytocompatibility and hemocompatibilty. Thus, this study demonstrated that the chitosan-silica hybrid material is a promising material for coating coronary stents, with minimal risk of in-stent restenosis and thrombogenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.04.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!