Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a result of societal transformations, political governance shifts, and advances in ICT, online information has become crucial in efforts by public authorities to make citizens better stewards of the environment. Yet, their environmental information provision may not always be attuned to end users' rationales, behaviours and appreciations. This study revolves around dynamic river level information provided by an environmental regulator - updated once a day or more, and collected by a sensor network of 333 gauging stations along 232 Scottish rivers. Employing an elaborate mixed methods approach with qualitative and quantitative elements, we examined if profiling of web page user groups and the subsequent employment of a specially designed Natural Language Generation (NLG) system could foster more effective online information provision. We identified profiles for the three main user groups: fishing, flood risk related, and paddling. The existence of well-distinguishable rationales and characteristics was in itself an argument for profiling; the same river level information was used in entirely different ways by the three groups. We subsequently constructed an advanced online experiment that implemented NLG based on live river level data. We found that textual information can be of much value in translating dynamic technical information into straightforward messages for the specific purposes of the user groups. We conclude that tailored NLG could be widely used in more effective online environmental information provision, and we provide five practical recommendations for public authorities and other information providers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.03.440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!