Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors.

Mol Cell Endocrinol

Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Electronic address:

Published: June 2019

Defining biomarkers for invasive pituitary neuroendocrine tumors (PitNETs) is highly desirable. The high mobility group A (HMGA) proteins are among the most widely expressed cancer-associated proteins. Indeed, their overexpression is a frequent feature of human malignancies, including PitNETs. We show that nonfunctioning PitNETs (NF-PitNETs) express significantly higher levels of HMGA1 than somatotropinomas (GHs) and corticotropinomas (ACTHs). Furthermore, HMGA2 expression was detected only in NF-PitNETs and was significantly higher in larger tumors than in smaller tumors. HMGA expression analysis generally focuses on nuclear staining. Here, cytoplasmic HMGA staining was also found. PitNETs displayed strong nuclear HMGA1 and strong cytoplasmic HMGA2 immunoreactivity. Interestingly, the HMGA1 and HMGA2 nuclear expression levels were significantly higher in invasive adenomas than in noninvasive adenomas. The highest levels of nuclear HMGA2 were found in GHs. In conclusion, we show that overexpression of nuclear HMGA proteins could be a potential biomarker of invasive PitNETs, particularly HMGA2 for GHs. HMGA2 might be a reliable biomarker for NF-PitNETs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2019.04.010DOI Listing

Publication Analysis

Top Keywords

hmga1 hmga2
8
pituitary neuroendocrine
8
neuroendocrine tumors
8
hmga proteins
8
hmga2 ghs
8
hmga2
7
pitnets
5
nuclear
5
differential expression
4
hmga1
4

Similar Publications

The molecular mechanisms underlying hepatocellular carcinoma (HCC) are complex and not fully understood. This study aims to explore the expression and clinical significance of High Mobility Group (HMG) proteins in HCC to identify potential prognostic biomarkers and therapeutic targets. Bioinformatic analyses were performed using data from The Cancer Genome Atlas (TCGA) and other databases.

View Article and Find Full Text PDF

Uterine leiomyoma with RAD51B::NUDT3 fusion: a report of 2 cases.

Virchows Arch

June 2024

Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic.

Three main uterine leiomyoma molecular subtypes include tumors with MED12 mutation, molecular aberrations leading to HMGA2 overexpression, and biallelic loss of FH. These aberrations are mutually exclusive and can be found in approximately 80-90% of uterine leiomyoma, in which they seem to be a driver event. Approximately 10% of uterine leiomyoma, however, does not belong to any of these categories.

View Article and Find Full Text PDF

Background: In the past decade, considerable research efforts on gastric cancer (GC) have been expended, however, little advancement has been made owing to the lack of effective biomarkers and treatment options. Herein, we aimed to examine the levels of expression, mutations, and clinical relevance of HMGs in GC to provide sufficient scientific evidence for clinical decision-making and risk management.

Methods: GC samples were obtained from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature aging disorder without an effective therapeutic regimen. Because of their targetability and influence on gene expression, microRNAs (miRNAs) are attractive therapeutic tools to treat diseases. Here we identified that hsa-miR-59 (miR-59) was markedly upregulated in HGPS patient cells and in multiple tissues of an HGPS mouse model (Lmna ), which disturbed the interaction between RNAPII and TFIIH, resulting in abnormal expression of cell cycle genes by targeting high-mobility group A family HMGA1 and HMGA2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!