Background: The cardioprotective effects of metformin remain poorly defined. Interleukin (IL)-33/ST2L signaling is a novel cardioprotective pathway, which is antagonized by the soluble isoform sST2. No data exist about the regulation of ST2 expression. This study aimed to evaluate the pathophysiological implication of Yin-Yang 1 (Yy1) transcription factor in cardiac remodeling and the expression of the soluble ST2 isoform.

Methods And Results: Myocardial infarction (MI) was induced in Wistar rats randomly receiving metformin or saline solution by permanent ligation of the left anterior coronary artery. In addition, a model of cardiomyocyte "biochemical strain" was used. Metformin administration improved post-MI cardiac remodeling, an effect that was associated with increased IL-33 and reduced sST2 levels in the myocardium. The anti-remodeling effects of metformin were also associated with a decrease in the transcription factor Yy1 intranuclear level and lower levels of phosphorylated HDAC4 within the cytoplasmic space. These effects were also observed in a cardiomyocyte biochemical strain model, where Yy1 silencing or HDAC4 inhibition blocked sST2 production in cardiomyocytes. Metformin blocked the HDAC4 phosphorylation induced by MI, preventing its export from the nucleus to the cytosol. The presence of dephosphorylated HDAC4 in the nucleus acted as a co-repressor of Yy1, repressing sST2 expression.

Conclusion: The transcription factor Yy1 regulates sST2 expression, and repression of Yy1 by metformin results in lower levels of sST2 that are associated with favorable myocardial remodeling. The manipulation of YY1 or its co-repressor HDAC4 emerge as new targets to modulate ST2/IL33 signaling and prevent adverse cardiac remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2019.04.009DOI Listing

Publication Analysis

Top Keywords

transcription factor
16
cardiac remodeling
16
st2 expression
8
adverse cardiac
8
effects metformin
8
factor yy1
8
lower levels
8
yy1
7
metformin
6
sst2
6

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!