The most common approaches to improve soluble expression of heterologous proteins are applications of molecular chaperones such as DnaK, DnaJ, GrpE, GroEL and GroES. The aim of present study was to enhance soluble expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in Escherichia coli by different approaches including modification of cultivation and induction conditions, and thermally, genetically and chemically enhancement of expression of cellular chaperones. To genetically enhance amount of molecular chaperones, co-expression of pET28-GM-CSF and pKJE7 plasmids was performed. The soluble expressed protein was affinity purified and subjected to endotoxin removal. Co-expression with molecular chaperones significantly increased soluble expression of GM-CSF. Addition of chemical chaperones and osmolytes like NaCl (0.5 M), sucrose (0.5 M), sorbitol (0.5 M) and MgCl (1 mM) to growing media could improve solubility of GM-CSF. Biological activity of purified GM-CSF was confirmed based on its proliferative effect on HL-60 cell lines. The approach developed in the present study can be applied to improve soluble expression of other recombinant protein proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2019.04.002 | DOI Listing |
Protein Expr Purif
January 2025
Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. Electronic address:
Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.
View Article and Find Full Text PDFNutrients
January 2025
Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria.
Individuals with special metabolic demands are at risk of deficiencies in fat-soluble vitamins, which can be counteracted via supplementation. Here, we tested the ability of micellization alone or in combination with selected natural plant extracts to increase the intestinal absorption and bioefficacy of fat-soluble vitamins. Micellated and nonmicellated vitamins D3 (cholecalciferol), D2 (ergocalciferol), E (alpha tocopheryl acetate), and K2 (menaquionone-7) were tested in intestinal Caco-2 or buccal TR146 cells in combination with curcuma (), black pepper (), or ginger () plant extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!