Although massively parallel sequencing (MPS) is becoming common practice in both research and routine clinical care, confirmation requirements of identified DNA variants using alternative methods are still topics of debate. When evaluating variants directly from MPS data, different read depth statistics, together with specialized genotype quality scores are, therefore, of high relevance. Here we report results of our validation study performed in two different ways: 1) confirmation of MPS identified variants using Sanger sequencing; and 2) simultaneous Sanger and MPS analysis of exons of selected genes. Detailed examination of false-positive and false-negative findings revealed typical error sources connected to low read depth/coverage, incomplete reference genome, indel realignment problems, as well as microsatellite associated amplification errors leading to base miss-calling. However, all these error types were identifiable with thorough manual revision of aligned reads according to specific patterns of distributions of variants and their corresponding reads. Moreover, our results point to dependence of both basic quantitative metrics (such as total read counts, alternative allele read counts and allelic balance) together with specific genotype quality scores on the used bioinformatics pipeline, stressing thus the need for establishing of specific thresholds for these metrics in each laboratory and for each involved pipeline independently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.04.013DOI Listing

Publication Analysis

Top Keywords

massively parallel
8
parallel sequencing
8
genotype quality
8
quality scores
8
read counts
8
variants
5
critical evaluation
4
evaluation confirmation
4
confirmation germline
4
germline sequence
4

Similar Publications

Massively parallel barcode sequencing revealed the interchangeability of capsule transporters in .

Sci Adv

January 2025

Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) family transporters are essential in glycan synthesis, flipping lipid-linked precursors across cell membranes. Yet, how they select their substrates remains enigmatic. Here, we investigate the substrate specificity of the MOP transporters in the capsular polysaccharide (CPS) synthesis pathway in .

View Article and Find Full Text PDF

More than a century of research shows that spaced learning improves long-term memory. However, there remains debate concerning why that is. A major limitation to resolving theoretical debates is the lack of evidence for how neural representations change as a function of spacing.

View Article and Find Full Text PDF

We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.

View Article and Find Full Text PDF

A meta-genome-wide association study across eight psychiatric disorders has highlighted the genetic architecture of pleiotropy in major psychiatric disorders. However, mechanisms underlying pleiotropic effects of the associated variants remain to be explored. We conducted a massively parallel reporter assay to decode the regulatory logic of variants with pleiotropic and disorder-specific effects.

View Article and Find Full Text PDF

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!