A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems.

Math Biosci

Department of Mathematics, Ryerson University, 350 Victoria St, M5B 2K3 Toronto, Canada.

Published: June 2019

The present paper introduces a new micro-meso hybrid algorithm based on the Ghost Cell Method concept in which the microscopic subdomain is governed by the Reactive Multi-Particle Collision (RMPC) dynamics. The mesoscopic subdomain is modeled using the Reaction-Diffusion Master Equation (RDME). The RDME is solved by means of the Inhomogeneous Stochastic Simulation Algorithm. No hybrid algorithm has hitherto used the RMPC dynamics for modeling reactions and the trajectories of each individual particle. The RMPC is faster than other molecular based methods and has the advantage of conserving mass, energy and momentum in the collision and free streaming steps. The new algorithm is tested on three reaction-diffusion systems. In all the systems studied, very good agreement with the deterministic solutions of the corresponding differential equations is obtained. In addition, it has been shown that proper discretization of the computational domain results in significant speed-ups in comparison with the full RMPC algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2019.04.001DOI Listing

Publication Analysis

Top Keywords

stochastic simulation
8
reaction-diffusion systems
8
hybrid algorithm
8
rmpc dynamics
8
algorithm
5
hybrid method
4
method micro-mesoscopic
4
micro-mesoscopic stochastic
4
simulation reaction-diffusion
4
systems paper
4

Similar Publications

Accelerated stochastic processes of plankton community assembly due to tidal restriction by seawall construction in the Yangtze River Estuary.

Mar Environ Res

December 2024

School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:

Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.

View Article and Find Full Text PDF

Against the backdrop of an aging population, community pension initiatives are gaining traction, permeating societal landscapes. This study delves into the equilibrium strategy within the context of a defined benefit pension plan, employing a differential game framework with a community pension model. Hence, the model entails the company's controls over investment rates in funds, juxtaposed with employees' inclination towards a greater proportion of community pension allocation in said funds.

View Article and Find Full Text PDF

The human immune system can recognize, attack, and eliminate cancer cells, but cancers can escape this immune surveillance. Variants of ecological predator-prey models can capture the dynamics of such cancer control mechanisms by adaptive immune system cells. These dynamical systems describe, e.

View Article and Find Full Text PDF

Kinetics and Optimality of Influenza A Virus Locomotion.

Phys Rev Lett

December 2024

Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.

Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.

View Article and Find Full Text PDF

The open nature of Wireless Sensor Networks (WSNs) renders them an easy target to malicious code propagation, posing a significant and persistent threat to their security. Various mathematical models have been studied in recent literature for understanding the dynamics and control of the propagation of malicious codes in WSNs. However, due to the inherent randomness and uncertainty present in WSNs, stochastic modeling approach is essential for a comprehensive understanding of the propagation of malicious codes in WSNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!