CaCo Zr O Perovskites as Oxygen-Selective Sorbents for Air Separation.

ChemSusChem

Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC, 27695, USA.

Published: June 2019

ABO perovskites are ideal for high-temperature thermochemical air separation for oxygen production because their oxygen nonstoichiometry δ can be varied in response to changes in temperature and oxygen partial pressure [ ]. Herein, the outstanding oxygen-sorption performance of CaCo Zr O perovskites and their potential application as oxygen-selective sorbents for air separation is reported. In situ thermal X-ray diffraction was used to study the materials' structural changes in response to temperature variations in air and inert atmosphere. Temperature-programmed reduction was employed to elucidate the relationship between perovskite composition and redox property. O sorption performance was evaluated by isothermal analyses at various temperature and along with long-term absorption-desorption cycle tests. The high oxygen-sorption capacity was mainly attributed to Co at B-site, whereas partial substitution of Co by Zr enhanced the structural crystallinity and thermal stability of the perovskite. A stable oxygen production of 2.87 wt % was observed at 900 °C during 5 min-sorption cycles for 100 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201900644DOI Listing

Publication Analysis

Top Keywords

air separation
12
caco perovskites
8
oxygen-selective sorbents
8
sorbents air
8
oxygen production
8
perovskites oxygen-selective
4
air
4
separation abo
4
abo perovskites
4
perovskites ideal
4

Similar Publications

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

Near-Field Mixing in a Coaxial Dual Swirled Injector.

Flow Turbul Combust

November 2024

Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.

Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.

View Article and Find Full Text PDF

Behavior, mechanisms, and applications of low-concentration CO in energy media.

Chem Soc Rev

January 2025

Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.

This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.

View Article and Find Full Text PDF

Linkage Microenvironment Modulation in Triazine-Based Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Peroxide Production.

Small

January 2025

Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Covalent organic frameworks (COFs), known for the precise tunability of molecular structures, hold significant promise for photocatalytic hydrogen peroxide (HO) production. Herein, by systematically altering the quinoline (QN) linkages in triazine (TA)-based COFs via the multi-component reactions, six R-QN-TA-COFs are synthesized with identical skeletons but different substituents. The fine-tuning of the optoelectronic properties and local microenvironment of COFs is allowed, thereby optimizing charge separation and improving interactions with dissolved oxygen.

View Article and Find Full Text PDF

The moderating and mediating role of the placenta in the association between prenatal exposure to air pollutants and birth weight: A twin study.

Environ Res

January 2025

Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Electronic address:

Prenatal exposure to air pollution has been linked to lower birth weight, yet the role of the placenta in this association is often overlooked. This study investigates whether placental characteristics act as moderators or mediators in the association between prenatal exposure to particulate matter (PM) and nitrogen dioxide (NO) and birth weight in twins. The study included 3340 twins (born 2002-2013) from the East Flanders Prospective Twin Survey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!