In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2019.2912073 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
African swine fever has caused huge losses to the global pig industry. In the absence of effective vaccines, reliable detection methods are crucial. The p30 protein of ASFV is often used as a target for detection due to its high antigenicity in the early stage of virus replication.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran.
A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:
Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!