Braided multi-electrode probes (BMEPs) for neural interfaces comprise ultrafine microwire bundles interwoven into tubular braids. BMEPs provide highly flexible probes and tethers, and an open lattice structure with up to 24 recording/stimulating channels in precise geometries, currently all within a [Formula: see text] diameter footprint. This paper compares the long-term tissue effects of BMEPs ( [Formula: see text] wires) versus single conventional 50- [Formula: see text] wires, by testing nearby chronic immune response and neural survival in rat cortex. Four different types of electrodes were implanted in cortex in each of eight rats: 1) BMEP with tether; 2) tethered 50- [Formula: see text] wire; 3) BMEP without a tether; and 4) untethered 50- [Formula: see text] wire. Quantitative immunohistological statistical comparisons after eight weeks using GFAP, ED1, and NeuN staining clearly showed that both BMEP implants had significantly less tissue immune response and more neuronal survival than either of the 50- [Formula: see text] wires ( ) in each of the eight rats. Data strongly indicate that BMEP tissue responses are superior, and that BMEP designs partly alleviate chronic tissue inflammatory responses and neural losses. The flexible body, tether and open braid lattice, and finer wire diameters of BMEP designs may all contribute to reducing the biological long-term response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418031PMC
http://dx.doi.org/10.1109/TNSRE.2019.2911912DOI Listing

Publication Analysis

Top Keywords

[formula text]
24
50- [formula
16
immune response
12
text] wires
12
chronic immune
8
neural survival
8
survival rat
8
rat cortex
8
bmep tether
8
text] wire
8

Similar Publications

Bubble coalescence principle in saline water.

Proc Natl Acad Sci U S A

February 2025

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.

Bubbles present in saline water typically exhibit a prolonged lifetime, making them attractive for various engineering processes. Herein, we unveil a transition from delayed bubble coalescence to rapid bursting within about one millisecond in salty solutions. The key aspect in understanding this transition lies in the combined influences of surface deformation and ion surface excess instead of characterizing the ions alone.

View Article and Find Full Text PDF

Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.

View Article and Find Full Text PDF

Improving human health and comfort in buildings requires efficient temperature regulation. Temperature control system has a significant contribution in minimizing the impact of climate change. Temperature control system is used in industry to control temperature.

View Article and Find Full Text PDF

The stability of kinetic-level convection cells (wherein the magnitude of macroscopic and microscopic velocities are of same order) is studied in a two-dimensional Yukawa liquid under the effect of microscopic velocity perturbations. Our numerical experiments demonstrate that for a given system aspect ratio β viz., the ratio of system length [Formula: see text] to its height [Formula: see text] and number of convective rolls initiated [Formula: see text], the fate of the convective cells is decided by [Formula: see text].

View Article and Find Full Text PDF

Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!