At calcium concentrations up to about 4 mM a selective permeability increase of cardiolipin/dioleoylphosphatidylcholine (50:50, mol%) membranes for calcium and its chelator arsenazo III is observed. Under these conditions calcium does not occupy all the binding sites of cardiolipin at the membrane interface and no vesicle-vesicle interactions are found. Lowering of the cardiolipin content of the vesicles to 20 mol% extends the calcium concentration range in which a selective permeability for calcium and arsenazo III is appearing up to about 12 mM. We suggest that the observed selective permeability increase is caused by transient formation of inverted micellar structures in the membrane with cardiolipin as translocating membrane component for calcium and arsenazo III. At calcium concentrations of 4 mM and higher for 50 mol% cardiolipin-containing vesicles a general permeability increase is found together with calcium-cardiolipin binding in a 1:1 stoichiometry, vesicles aggregation and, above 8 mM of calcium, vesicle fusion. The loss of barrier function of the membrane under these conditions is correlated with vesicle aggregation and may be explained by a transition from a bilayer into a hexagonal HII organization of the phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(87)90327-0DOI Listing

Publication Analysis

Top Keywords

selective permeability
12
permeability increase
12
arsenazo iii
12
calcium
8
calcium concentrations
8
calcium arsenazo
8
permeability
5
calcium-induced changes
4
changes permeability
4
permeability dioleoylphosphatidylcholine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!